← Back to Analysis

16 training data quality management

Documentation for 16_training_data_quality_management from the Pipeline ex repository.

Training Data Quality Management

Overview

This document addresses the critical gap in our DSPy implementation plan regarding training data quality management. The original analysis emphasized systematic training data collection and validation, but our current plans lack detailed architectural specifications for ensuring data quality, managing data lifecycle, and preventing optimization degradation due to poor training data.

Problem Statement

DSPy optimization effectiveness is directly dependent on training data quality. Poor quality training data can lead to:

  1. Degraded Performance: Optimization that makes the system worse
  2. Bias Introduction: Systematic biases in AI responses
  3. Inconsistent Results: Unpredictable optimization outcomes
  4. Resource Waste: Computational resources spent on ineffective optimization
  5. User Trust Issues: Inconsistent or poor AI responses

Architecture Design

1. Data Quality Framework

Quality Metrics Definition

defmodule Pipeline.DSPy.DataQuality do
  @moduledoc """
  Defines and calculates quality metrics for training data.
  """
  
  defstruct [
    :completeness,
    :consistency,
    :accuracy,
    :relevance,
    :diversity,
    :freshness,
    :coverage,
    :bias_score
  ]
  
  @quality_dimensions [
    :completeness,    # How complete is the data?
    :consistency,     # Is the data consistent across examples?
    :accuracy,        # How accurate are the examples?
    :relevance,       # How relevant is the data to the task?
    :diversity,       # How diverse are the examples?
    :freshness,       # How recent is the data?
    :coverage,        # How well does the data cover the problem space?
    :bias_score       # How biased is the data?
  ]
  
  def calculate_quality_score(training_data, signature) do
    metrics = %__MODULE__{
      completeness: calculate_completeness(training_data, signature),
      consistency: calculate_consistency(training_data),
      accuracy: calculate_accuracy(training_data),
      relevance: calculate_relevance(training_data, signature),
      diversity: calculate_diversity(training_data),
      freshness: calculate_freshness(training_data),
      coverage: calculate_coverage(training_data, signature),
      bias_score: calculate_bias_score(training_data)
    }
    
    # Calculate weighted quality score
    calculate_weighted_score(metrics)
  end
  
  defp calculate_completeness(training_data, signature) do
    # Check if all required fields are present in training examples
    required_fields = extract_required_fields(signature)
    
    complete_examples = Enum.count(training_data, fn example ->
      all_fields_present?(example, required_fields)
    end)
    
    complete_examples / length(training_data)
  end
  
  defp calculate_consistency(training_data) do
    # Check consistency across similar inputs
    consistency_score = training_data
    |> group_similar_examples()
    |> Enum.map(&calculate_group_consistency/1)
    |> Enum.reduce(0, &+/2)
    |> Kernel./(length(training_data))
    
    consistency_score
  end
  
  defp calculate_accuracy(training_data) do
    # Use various heuristics to estimate accuracy
    accuracy_indicators = [
      check_output_format_validity(training_data),
      check_logical_consistency(training_data),
      check_domain_knowledge_consistency(training_data)
    ]
    
    Enum.reduce(accuracy_indicators, 0, &+/2) / length(accuracy_indicators)
  end
  
  defp calculate_diversity(training_data) do
    # Measure diversity in inputs and outputs
    input_diversity = calculate_input_diversity(training_data)
    output_diversity = calculate_output_diversity(training_data)
    
    (input_diversity + output_diversity) / 2
  end
  
  defp calculate_bias_score(training_data) do
    # Detect various forms of bias
    bias_indicators = [
      detect_demographic_bias(training_data),
      detect_topic_bias(training_data),
      detect_sentiment_bias(training_data),
      detect_length_bias(training_data)
    ]
    
    # Lower bias score is better
    1.0 - (Enum.reduce(bias_indicators, 0, &+/2) / length(bias_indicators))
  end
end

Data Validation Pipeline

defmodule Pipeline.DSPy.DataValidationPipeline do
  @moduledoc """
  Validates training data through multiple stages.
  """
  
  defstruct [
    :validation_stages,
    :validation_results,
    :quality_thresholds,
    :remediation_strategies
  ]
  
  def validate_training_data(training_data, signature, options \\ []) do
    pipeline = create_validation_pipeline(signature, options)
    
    execute_validation_pipeline(training_data, pipeline)
  end
  
  defp create_validation_pipeline(signature, options) do
    %__MODULE__{
      validation_stages: [
        {:schema_validation, &validate_schema/2},
        {:completeness_check, &check_completeness/2},
        {:consistency_check, &check_consistency/2},
        {:quality_assessment, &assess_quality/2},
        {:bias_detection, &detect_bias/2},
        {:outlier_detection, &detect_outliers/2},
        {:relevance_scoring, &score_relevance/2}
      ],
      validation_results: %{},
      quality_thresholds: get_quality_thresholds(options),
      remediation_strategies: get_remediation_strategies(options)
    }
  end
  
  defp execute_validation_pipeline(training_data, pipeline) do
    context = %{
      training_data: training_data,
      signature: pipeline.signature,
      options: pipeline.options
    }
    
    Enum.reduce(pipeline.validation_stages, {:ok, context}, fn
      {stage_name, stage_fn}, {:ok, context} ->
        case stage_fn.(context, pipeline) do
          {:ok, updated_context} ->
            {:ok, updated_context}
          
          {:warning, updated_context, warnings} ->
            Logger.warning("Validation stage #{stage_name} produced warnings: #{inspect(warnings)}")
            {:ok, updated_context}
          
          {:error, reason} ->
            Logger.error("Validation stage #{stage_name} failed: #{reason}")
            {:error, {stage_name, reason}}
        end
      
      _stage, {:error, reason} ->
        {:error, reason}
    end)
  end
  
  defp validate_schema(context, pipeline) do
    # Validate that training data conforms to expected schema
    signature = context.signature
    
    invalid_examples = Enum.filter(context.training_data, fn example ->
      not valid_example_schema?(example, signature)
    end)
    
    case invalid_examples do
      [] ->
        {:ok, context}
      
      invalid ->
        if length(invalid) / length(context.training_data) > 0.1 do
          {:error, "More than 10% of examples have invalid schema"}
        else
          filtered_data = context.training_data -- invalid
          updated_context = %{context | training_data: filtered_data}
          {:warning, updated_context, "Removed #{length(invalid)} invalid examples"}
        end
    end
  end
  
  defp check_completeness(context, pipeline) do
    # Check if we have sufficient examples for each input/output combination
    required_fields = extract_required_fields(context.signature)
    
    completeness_score = Pipeline.DSPy.DataQuality.calculate_completeness(
      context.training_data,
      context.signature
    )
    
    threshold = pipeline.quality_thresholds.completeness
    
    if completeness_score >= threshold do
      {:ok, context}
    else
      {:error, "Data completeness #{completeness_score} below threshold #{threshold}"}
    end
  end
end

2. Data Versioning and Lineage

Data Version Management

defmodule Pipeline.DSPy.DataVersionManager do
  @moduledoc """
  Manages versioning and lineage of training data.
  """
  
  use GenServer
  
  defstruct [
    :version_store,
    :lineage_graph,
    :version_metadata,
    :current_versions
  ]
  
  def start_link(opts \\ []) do
    GenServer.start_link(__MODULE__, opts, name: __MODULE__)
  end
  
  def create_version(signature_hash, training_data, metadata \\ %{}) do
    GenServer.call(__MODULE__, {:create_version, signature_hash, training_data, metadata})
  end
  
  def get_version(signature_hash, version_id) do
    GenServer.call(__MODULE__, {:get_version, signature_hash, version_id})
  end
  
  def get_latest_version(signature_hash) do
    GenServer.call(__MODULE__, {:get_latest_version, signature_hash})
  end
  
  def get_version_history(signature_hash) do
    GenServer.call(__MODULE__, {:get_version_history, signature_hash})
  end
  
  def init(opts) do
    state = %__MODULE__{
      version_store: initialize_version_store(opts),
      lineage_graph: :digraph.new(),
      version_metadata: %{},
      current_versions: %{}
    }
    
    {:ok, state}
  end
  
  def handle_call({:create_version, signature_hash, training_data, metadata}, _from, state) do
    version_id = generate_version_id()
    
    # Calculate data fingerprint for deduplication
    data_fingerprint = calculate_data_fingerprint(training_data)
    
    # Check if this exact data already exists
    case find_version_by_fingerprint(signature_hash, data_fingerprint, state) do
      {:ok, existing_version_id} ->
        # Data already exists, return existing version
        {:reply, {:ok, existing_version_id}, state}
      
      :not_found ->
        # Create new version
        version_record = %{
          version_id: version_id,
          signature_hash: signature_hash,
          training_data: training_data,
          data_fingerprint: data_fingerprint,
          metadata: metadata,
          created_at: DateTime.utc_now(),
          parent_version: get_current_version(signature_hash, state),
          quality_score: calculate_quality_score(training_data, signature_hash)
        }
        
        # Store version
        new_version_store = store_version(version_record, state.version_store)
        
        # Update lineage graph
        new_lineage_graph = update_lineage_graph(version_record, state.lineage_graph)
        
        # Update current version
        new_current_versions = Map.put(state.current_versions, signature_hash, version_id)
        
        new_state = %{
          state |
          version_store: new_version_store,
          lineage_graph: new_lineage_graph,
          current_versions: new_current_versions
        }
        
        {:reply, {:ok, version_id}, new_state}
    end
  end
  
  defp calculate_data_fingerprint(training_data) do
    # Create a fingerprint that uniquely identifies the data
    training_data
    |> Jason.encode!()
    |> then(&:crypto.hash(:sha256, &1))
    |> Base.encode64()
  end
  
  defp update_lineage_graph(version_record, lineage_graph) do
    # Add version to lineage graph
    :digraph.add_vertex(lineage_graph, version_record.version_id, version_record.metadata)
    
    # Add edge from parent if exists
    case version_record.parent_version do
      nil ->
        lineage_graph
      
      parent_version_id ->
        :digraph.add_edge(lineage_graph, parent_version_id, version_record.version_id)
        lineage_graph
    end
  end
end

Data Lineage Tracking

defmodule Pipeline.DSPy.DataLineageTracker do
  @moduledoc """
  Tracks the lineage and provenance of training data.
  """
  
  defstruct [
    :data_sources,
    :transformation_history,
    :quality_evolution,
    :usage_tracking
  ]
  
  def track_data_transformation(source_version, transformation_type, result_version, metadata) do
    transformation_record = %{
      source_version: source_version,
      transformation_type: transformation_type,
      result_version: result_version,
      metadata: metadata,
      timestamp: DateTime.utc_now()
    }
    
    GenServer.cast(__MODULE__, {:track_transformation, transformation_record})
  end
  
  def get_data_lineage(version_id) do
    GenServer.call(__MODULE__, {:get_data_lineage, version_id})
  end
  
  def trace_data_provenance(version_id) do
    GenServer.call(__MODULE__, {:trace_data_provenance, version_id})
  end
  
  def handle_call({:get_data_lineage, version_id}, _from, state) do
    # Build lineage tree from version
    lineage_tree = build_lineage_tree(version_id, state)
    
    {:reply, {:ok, lineage_tree}, state}
  end
  
  def handle_call({:trace_data_provenance, version_id}, _from, state) do
    # Trace back to original data sources
    provenance_chain = trace_provenance_chain(version_id, state)
    
    {:reply, {:ok, provenance_chain}, state}
  end
  
  defp build_lineage_tree(version_id, state) do
    # Build tree showing all transformations and derivatives
    %{
      version_id: version_id,
      children: get_child_versions(version_id, state),
      transformations: get_transformations_for_version(version_id, state),
      quality_metrics: get_quality_metrics_for_version(version_id, state)
    }
  end
  
  defp trace_provenance_chain(version_id, state) do
    # Trace back to original sources
    build_provenance_chain(version_id, state, [])
  end
  
  defp build_provenance_chain(version_id, state, chain) do
    version_info = get_version_info(version_id, state)
    
    updated_chain = [version_info | chain]
    
    case version_info.parent_version do
      nil ->
        # Reached root, return chain
        Enum.reverse(updated_chain)
      
      parent_version_id ->
        # Continue tracing
        build_provenance_chain(parent_version_id, state, updated_chain)
    end
  end
end

3. Bias Detection and Mitigation

Bias Detection System

defmodule Pipeline.DSPy.BiasDetector do
  @moduledoc """
  Detects various forms of bias in training data.
  """
  
  @bias_types [
    :demographic_bias,
    :topic_bias,
    :sentiment_bias,
    :length_bias,
    :complexity_bias,
    :temporal_bias
  ]
  
  def detect_bias(training_data, signature) do
    bias_results = %{}
    
    Enum.reduce(@bias_types, bias_results, fn bias_type, acc ->
      case detect_bias_type(training_data, signature, bias_type) do
        {:ok, bias_score, details} ->
          Map.put(acc, bias_type, %{score: bias_score, details: details})
        
        {:error, reason} ->
          Logger.warning("Failed to detect #{bias_type}: #{reason}")
          acc
      end
    end)
  end
  
  defp detect_bias_type(training_data, signature, :demographic_bias) do
    # Detect bias related to demographic characteristics
    demographic_patterns = extract_demographic_patterns(training_data)
    
    bias_score = calculate_demographic_bias_score(demographic_patterns)
    
    details = %{
      patterns: demographic_patterns,
      recommendations: generate_demographic_bias_recommendations(demographic_patterns)
    }
    
    {:ok, bias_score, details}
  end
  
  defp detect_bias_type(training_data, signature, :topic_bias) do
    # Detect bias in topic coverage
    topic_distribution = analyze_topic_distribution(training_data)
    
    bias_score = calculate_topic_bias_score(topic_distribution)
    
    details = %{
      distribution: topic_distribution,
      underrepresented_topics: find_underrepresented_topics(topic_distribution),
      recommendations: generate_topic_bias_recommendations(topic_distribution)
    }
    
    {:ok, bias_score, details}
  end
  
  defp detect_bias_type(training_data, signature, :sentiment_bias) do
    # Detect bias in sentiment of examples
    sentiment_analysis = analyze_sentiment_distribution(training_data)
    
    bias_score = calculate_sentiment_bias_score(sentiment_analysis)
    
    details = %{
      sentiment_distribution: sentiment_analysis,
      recommendations: generate_sentiment_bias_recommendations(sentiment_analysis)
    }
    
    {:ok, bias_score, details}
  end
  
  defp extract_demographic_patterns(training_data) do
    # Use NLP techniques to identify demographic references
    training_data
    |> Enum.map(&extract_demographic_indicators/1)
    |> Enum.reduce(%{}, &merge_demographic_indicators/2)
  end
  
  defp calculate_demographic_bias_score(demographic_patterns) do
    # Calculate bias score based on demographic representation
    total_examples = Enum.sum(Map.values(demographic_patterns))
    
    if total_examples == 0 do
      0.0
    else
      # Calculate entropy to measure bias
      entropy = demographic_patterns
      |> Map.values()
      |> Enum.map(fn count -> count / total_examples end)
      |> Enum.reduce(0, fn p, acc -> acc - p * :math.log(p) end)
      
      # Normalize entropy to bias score (0 = no bias, 1 = maximum bias)
      max_entropy = :math.log(map_size(demographic_patterns))
      
      if max_entropy > 0 do
        1.0 - (entropy / max_entropy)
      else
        0.0
      end
    end
  end
end

Bias Mitigation Strategies

defmodule Pipeline.DSPy.BiasMitigator do
  @moduledoc """
  Implements strategies to mitigate bias in training data.
  """
  
  def mitigate_bias(training_data, bias_analysis, mitigation_strategy \\ :balanced_sampling) do
    case mitigation_strategy do
      :balanced_sampling ->
        apply_balanced_sampling(training_data, bias_analysis)
      
      :synthetic_augmentation ->
        apply_synthetic_augmentation(training_data, bias_analysis)
      
      :reweighting ->
        apply_reweighting(training_data, bias_analysis)
      
      :adversarial_debiasing ->
        apply_adversarial_debiasing(training_data, bias_analysis)
    end
  end
  
  defp apply_balanced_sampling(training_data, bias_analysis) do
    # Balance the dataset by sampling from underrepresented groups
    
    # Identify underrepresented groups
    underrepresented_groups = identify_underrepresented_groups(bias_analysis)
    
    # Calculate target sample sizes
    target_sizes = calculate_target_sample_sizes(training_data, underrepresented_groups)
    
    # Sample from each group
    balanced_data = Enum.reduce(target_sizes, [], fn {group, target_size}, acc ->
      group_examples = filter_examples_by_group(training_data, group)
      
      sampled_examples = if length(group_examples) >= target_size do
        Enum.take_random(group_examples, target_size)
      else
        # Oversample if not enough examples
        oversample_examples(group_examples, target_size)
      end
      
      acc ++ sampled_examples
    end)
    
    {:ok, balanced_data}
  end
  
  defp apply_synthetic_augmentation(training_data, bias_analysis) do
    # Generate synthetic examples for underrepresented groups
    
    underrepresented_groups = identify_underrepresented_groups(bias_analysis)
    
    synthetic_examples = Enum.reduce(underrepresented_groups, [], fn group, acc ->
      existing_examples = filter_examples_by_group(training_data, group)
      
      # Generate synthetic examples using templates or variation
      synthetic = generate_synthetic_examples(existing_examples, group)
      
      acc ++ synthetic
    end)
    
    augmented_data = training_data ++ synthetic_examples
    
    {:ok, augmented_data}
  end
  
  defp apply_reweighting(training_data, bias_analysis) do
    # Assign weights to examples to balance representation
    
    group_weights = calculate_group_weights(bias_analysis)
    
    weighted_data = Enum.map(training_data, fn example ->
      group = identify_example_group(example)
      weight = Map.get(group_weights, group, 1.0)
      
      Map.put(example, :weight, weight)
    end)
    
    {:ok, weighted_data}
  end
  
  defp generate_synthetic_examples(existing_examples, group) do
    # Simple synthetic generation using templates and variation
    
    case existing_examples do
      [] ->
        []
      
      examples ->
        # Generate variations of existing examples
        examples
        |> Enum.take_random(min(5, length(examples)))
        |> Enum.flat_map(&generate_variations/1)
    end
  end
  
  defp generate_variations(example) do
    # Generate variations using simple text manipulation
    # This is a simplified version - in practice, you'd use more sophisticated techniques
    
    variations = []
    
    # Paraphrase variation
    paraphrased = paraphrase_example(example)
    variations = if paraphrased != example, do: [paraphrased | variations], else: variations
    
    # Synonym variation
    synonym_varied = apply_synonym_variation(example)
    variations = if synonym_varied != example, do: [synonym_varied | variations], else: variations
    
    # Structure variation
    structure_varied = apply_structure_variation(example)
    variations = if structure_varied != example, do: [structure_varied | variations], else: variations
    
    variations
  end
end

4. Automated Data Collection and Curation

Data Collection Pipeline

defmodule Pipeline.DSPy.DataCollectionPipeline do
  @moduledoc """
  Automated collection and curation of training data from various sources.
  """
  
  use GenServer
  
  defstruct [
    :collection_sources,
    :collection_schedule,
    :curation_rules,
    :active_collections
  ]
  
  def start_link(opts \\ []) do
    GenServer.start_link(__MODULE__, opts, name: __MODULE__)
  end
  
  def register_collection_source(source_name, source_config) do
    GenServer.call(__MODULE__, {:register_source, source_name, source_config})
  end
  
  def trigger_collection(source_name, signature_hash) do
    GenServer.cast(__MODULE__, {:trigger_collection, source_name, signature_hash})
  end
  
  def init(opts) do
    state = %__MODULE__{
      collection_sources: %{},
      collection_schedule: %{},
      curation_rules: load_curation_rules(opts),
      active_collections: %{}
    }
    
    # Start periodic collection
    schedule_periodic_collection()
    
    {:ok, state}
  end
  
  def handle_call({:register_source, source_name, source_config}, _from, state) do
    # Register a new data collection source
    new_sources = Map.put(state.collection_sources, source_name, source_config)
    
    # Set up collection schedule if specified
    new_schedule = case source_config.schedule do
      nil ->
        state.collection_schedule
      
      schedule ->
        Map.put(state.collection_schedule, source_name, schedule)
    end
    
    new_state = %{
      state |
      collection_sources: new_sources,
      collection_schedule: new_schedule
    }
    
    {:reply, :ok, new_state}
  end
  
  def handle_cast({:trigger_collection, source_name, signature_hash}, state) do
    case Map.get(state.collection_sources, source_name) do
      nil ->
        Logger.warning("Unknown collection source: #{source_name}")
        {:noreply, state}
      
      source_config ->
        # Start collection task
        collection_task = start_collection_task(source_name, source_config, signature_hash)
        
        new_active_collections = Map.put(
          state.active_collections,
          {source_name, signature_hash},
          collection_task
        )
        
        new_state = %{state | active_collections: new_active_collections}
        
        {:noreply, new_state}
    end
  end
  
  def handle_info(:periodic_collection, state) do
    # Trigger scheduled collections
    Enum.each(state.collection_schedule, fn {source_name, schedule} ->
      if should_collect_now?(schedule) do
        # Trigger collection for all signatures that might benefit
        signatures_to_collect = identify_signatures_needing_data()
        
        Enum.each(signatures_to_collect, fn signature_hash ->
          trigger_collection(source_name, signature_hash)
        end)
      end
    end)
    
    schedule_periodic_collection()
    
    {:noreply, state}
  end
  
  defp start_collection_task(source_name, source_config, signature_hash) do
    Task.start(fn ->
      case collect_data_from_source(source_config, signature_hash) do
        {:ok, raw_data} ->
          # Curate collected data
          case curate_collected_data(raw_data, signature_hash) do
            {:ok, curated_data} ->
              # Add to training data
              add_to_training_data(signature_hash, curated_data)
              
              Logger.info("Successfully collected and curated #{length(curated_data)} examples from #{source_name}")
            
            {:error, reason} ->
              Logger.error("Failed to curate data from #{source_name}: #{reason}")
          end
        
        {:error, reason} ->
          Logger.error("Failed to collect data from #{source_name}: #{reason}")
      end
    end)
  end
  
  defp collect_data_from_source(source_config, signature_hash) do
    case source_config.type do
      :execution_history ->
        collect_from_execution_history(source_config, signature_hash)
      
      :user_feedback ->
        collect_from_user_feedback(source_config, signature_hash)
      
      :synthetic_generation ->
        collect_from_synthetic_generation(source_config, signature_hash)
      
      :external_api ->
        collect_from_external_api(source_config, signature_hash)
      
      _ ->
        {:error, "Unknown source type: #{source_config.type}"}
    end
  end
  
  defp collect_from_execution_history(source_config, signature_hash) do
    # Collect positive examples from successful executions
    time_range = source_config.time_range || [days: -30]
    
    successful_executions = Pipeline.DSPy.ExecutionHistory.get_successful_executions(
      signature_hash,
      time_range
    )
    
    # Convert executions to training examples
    training_examples = Enum.map(successful_executions, fn execution ->
      %{
        input: execution.input,
        output: execution.output,
        metadata: %{
          source: :execution_history,
          execution_id: execution.id,
          timestamp: execution.timestamp,
          performance_metrics: execution.performance_metrics
        }
      }
    end)
    
    {:ok, training_examples}
  end
  
  defp collect_from_user_feedback(source_config, signature_hash) do
    # Collect examples from user corrections and feedback
    feedback_examples = Pipeline.DSPy.UserFeedback.get_feedback_examples(
      signature_hash,
      source_config.feedback_types || [:corrections, :improvements]
    )
    
    # Convert feedback to training examples
    training_examples = Enum.map(feedback_examples, fn feedback ->
      %{
        input: feedback.original_input,
        output: feedback.corrected_output,
        metadata: %{
          source: :user_feedback,
          feedback_id: feedback.id,
          feedback_type: feedback.type,
          user_id: feedback.user_id,
          timestamp: feedback.timestamp
        }
      }
    end)
    
    {:ok, training_examples}
  end
end

Data Curation System

defmodule Pipeline.DSPy.DataCurator do
  @moduledoc """
  Curates collected training data to ensure quality and consistency.
  """
  
  def curate_data(raw_data, signature_hash, curation_rules \\ []) do
    # Apply curation pipeline
    curation_pipeline = build_curation_pipeline(curation_rules)
    
    execute_curation_pipeline(raw_data, signature_hash, curation_pipeline)
  end
  
  defp build_curation_pipeline(curation_rules) do
    default_pipeline = [
      {:deduplication, &deduplicate_examples/2},
      {:format_validation, &validate_format/2},
      {:quality_filtering, &filter_by_quality/2},
      {:relevance_filtering, &filter_by_relevance/2},
      {:bias_checking, &check_for_bias/2},
      {:consistency_checking, &check_consistency/2}
    ]
    
    # Merge with custom rules
    Enum.reduce(curation_rules, default_pipeline, fn rule, pipeline ->
      add_or_replace_rule(pipeline, rule)
    end)
  end
  
  defp execute_curation_pipeline(raw_data, signature_hash, pipeline) do
    context = %{
      data: raw_data,
      signature_hash: signature_hash,
      curation_metadata: %{
        original_count: length(raw_data),
        processing_steps: []
      }
    }
    
    Enum.reduce(pipeline, {:ok, context}, fn
      {step_name, step_fn}, {:ok, context} ->
        case step_fn.(context, %{}) do
          {:ok, updated_context} ->
            # Record processing step
            step_record = %{
              step: step_name,
              input_count: length(context.data),
              output_count: length(updated_context.data),
              timestamp: DateTime.utc_now()
            }
            
            processing_steps = [step_record | context.curation_metadata.processing_steps]
            
            updated_metadata = %{
              updated_context.curation_metadata |
              processing_steps: processing_steps
            }
            
            final_context = %{updated_context | curation_metadata: updated_metadata}
            
            {:ok, final_context}
          
          {:error, reason} ->
            {:error, {step_name, reason}}
        end
      
      _step, {:error, reason} ->
        {:error, reason}
    end)
  end
  
  defp deduplicate_examples(context, _opts) do
    # Remove duplicate examples based on content similarity
    unique_examples = context.data
    |> Enum.uniq_by(&calculate_content_hash/1)
    |> remove_near_duplicates()
    
    updated_context = %{context | data: unique_examples}
    
    {:ok, updated_context}
  end
  
  defp filter_by_quality(context, opts) do
    # Filter examples based on quality metrics
    quality_threshold = opts[:quality_threshold] || 0.7
    
    high_quality_examples = Enum.filter(context.data, fn example ->
      quality_score = calculate_example_quality(example)
      quality_score >= quality_threshold
    end)
    
    updated_context = %{context | data: high_quality_examples}
    
    {:ok, updated_context}
  end
  
  defp filter_by_relevance(context, opts) do
    # Filter examples based on relevance to the signature
    relevance_threshold = opts[:relevance_threshold] || 0.6
    
    relevant_examples = Enum.filter(context.data, fn example ->
      relevance_score = calculate_example_relevance(example, context.signature_hash)
      relevance_score >= relevance_threshold
    end)
    
    updated_context = %{context | data: relevant_examples}
    
    {:ok, updated_context}
  end
  
  defp calculate_content_hash(example) do
    # Calculate hash based on input and output content
    content = "#{example.input}#{example.output}"
    
    :crypto.hash(:sha256, content)
    |> Base.encode64()
  end
  
  defp remove_near_duplicates(examples) do
    # Remove examples that are very similar to each other
    # This is a simplified implementation
    
    Enum.reduce(examples, [], fn example, acc ->
      if Enum.any?(acc, &examples_too_similar?(&1, example)) do
        acc
      else
        [example | acc]
      end
    end)
  end
  
  defp examples_too_similar?(example1, example2) do
    # Simple similarity check based on string similarity
    input_similarity = calculate_string_similarity(example1.input, example2.input)
    output_similarity = calculate_string_similarity(example1.output, example2.output)
    
    # Consider examples too similar if both input and output are very similar
    input_similarity > 0.9 and output_similarity > 0.9
  end
end

5. Quality Monitoring and Alerts

Quality Monitoring System

defmodule Pipeline.DSPy.QualityMonitor do
  @moduledoc """
  Monitors training data quality and triggers alerts when issues are detected.
  """
  
  use GenServer
  
  defstruct [
    :quality_metrics,
    :alert_thresholds,
    :monitoring_schedule,
    :alert_history
  ]
  
  def start_link(opts \\ []) do
    GenServer.start_link(__MODULE__, opts, name: __MODULE__)
  end
  
  def monitor_signature_quality(signature_hash) do
    GenServer.cast(__MODULE__, {:monitor_signature, signature_hash})
  end
  
  def get_quality_report(signature_hash) do
    GenServer.call(__MODULE__, {:get_quality_report, signature_hash})
  end
  
  def init(opts) do
    state = %__MODULE__{
      quality_metrics: %{},
      alert_thresholds: load_alert_thresholds(opts),
      monitoring_schedule: %{},
      alert_history: []
    }
    
    # Start periodic monitoring
    schedule_quality_monitoring()
    
    {:ok, state}
  end
  
  def handle_info(:monitor_quality, state) do
    # Monitor quality for all tracked signatures
    new_state = Enum.reduce(state.quality_metrics, state, fn {signature_hash, _}, acc ->
      monitor_signature_quality_internal(signature_hash, acc)
    end)
    
    schedule_quality_monitoring()
    
    {:noreply, new_state}
  end
  
  defp monitor_signature_quality_internal(signature_hash, state) do
    # Get current training data
    case Pipeline.DSPy.DataVersionManager.get_latest_version(signature_hash) do
      {:ok, latest_version} ->
        # Calculate quality metrics
        quality_metrics = Pipeline.DSPy.DataQuality.calculate_quality_score(
          latest_version.training_data,
          latest_version.signature
        )
        
        # Check for alerts
        alerts = check_quality_alerts(signature_hash, quality_metrics, state.alert_thresholds)
        
        # Update state
        new_quality_metrics = Map.put(state.quality_metrics, signature_hash, quality_metrics)
        new_alert_history = alerts ++ state.alert_history
        
        %{
          state |
          quality_metrics: new_quality_metrics,
          alert_history: new_alert_history
        }
      
      {:error, reason} ->
        Logger.warning("Failed to get training data for quality monitoring: #{reason}")
        state
    end
  end
  
  defp check_quality_alerts(signature_hash, quality_metrics, alert_thresholds) do
    alerts = []
    
    # Check completeness
    if quality_metrics.completeness < alert_thresholds.completeness do
      alert = create_quality_alert(signature_hash, :completeness, quality_metrics.completeness, alert_thresholds.completeness)
      alerts = [alert | alerts]
    end
    
    # Check consistency
    if quality_metrics.consistency < alert_thresholds.consistency do
      alert = create_quality_alert(signature_hash, :consistency, quality_metrics.consistency, alert_thresholds.consistency)
      alerts = [alert | alerts]
    end
    
    # Check bias score
    if quality_metrics.bias_score < alert_thresholds.bias_score do
      alert = create_quality_alert(signature_hash, :bias_score, quality_metrics.bias_score, alert_thresholds.bias_score)
      alerts = [alert | alerts]
    end
    
    # Send alerts if any
    if not Enum.empty?(alerts) do
      send_quality_alerts(alerts)
    end
    
    alerts
  end
  
  defp create_quality_alert(signature_hash, metric_type, current_value, threshold) do
    %{
      signature_hash: signature_hash,
      metric_type: metric_type,
      current_value: current_value,
      threshold: threshold,
      severity: calculate_alert_severity(current_value, threshold),
      timestamp: DateTime.utc_now(),
      recommendations: generate_quality_recommendations(metric_type, current_value, threshold)
    }
  end
  
  defp send_quality_alerts(alerts) do
    # Send alerts to monitoring system
    Enum.each(alerts, fn alert ->
      Logger.warning("Quality alert: #{alert.metric_type} for #{alert.signature_hash} is #{alert.current_value}, below threshold #{alert.threshold}")
      
      # Send to external monitoring system
      Pipeline.Monitoring.send_alert(alert)
    end)
  end
end

Integration with Existing System

1. Configuration Integration

workflow:
  name: quality_managed_pipeline
  
  dspy_config:
    training_data_quality:
      enabled: true
      quality_thresholds:
        completeness: 0.8
        consistency: 0.7
        accuracy: 0.75
        bias_score: 0.6
      
      data_collection:
        sources:
          - type: execution_history
            enabled: true
            time_range: [days: -30]
          - type: user_feedback
            enabled: true
            feedback_types: [corrections, improvements]
      
      bias_mitigation:
        enabled: true
        strategy: balanced_sampling
        bias_types: [demographic_bias, topic_bias, sentiment_bias]
      
      monitoring:
        enabled: true
        check_interval: 3600  # 1 hour
        alert_thresholds:
          completeness: 0.7
          consistency: 0.6
          bias_score: 0.5

2. Testing and Validation

defmodule Pipeline.DSPy.QualityManagementTest do
  use ExUnit.Case
  
  test "quality metrics calculation" do
    training_data = create_test_training_data()
    signature = create_test_signature()
    
    quality_metrics = Pipeline.DSPy.DataQuality.calculate_quality_score(training_data, signature)
    
    assert quality_metrics.completeness >= 0.0
    assert quality_metrics.completeness <= 1.0
    assert quality_metrics.consistency >= 0.0
    assert quality_metrics.consistency <= 1.0
  end
  
  test "bias detection" do
    biased_data = create_biased_training_data()
    signature = create_test_signature()
    
    bias_results = Pipeline.DSPy.BiasDetector.detect_bias(biased_data, signature)
    
    assert bias_results[:demographic_bias][:score] > 0.5
    assert length(bias_results[:demographic_bias][:details][:recommendations]) > 0
  end
  
  test "data version management" do
    signature_hash = "test_signature_hash"
    training_data = create_test_training_data()
    
    {:ok, version_id} = Pipeline.DSPy.DataVersionManager.create_version(signature_hash, training_data)
    
    {:ok, retrieved_version} = Pipeline.DSPy.DataVersionManager.get_version(signature_hash, version_id)
    
    assert retrieved_version.training_data == training_data
  end
end

This comprehensive training data quality management system ensures that DSPy optimization is based on high-quality, unbiased, and well-curated training data, leading to more effective and reliable AI pipeline optimization.