← Back to Analysis

17 production deployment strategy

Documentation for 17_production_deployment_strategy from the Pipeline ex repository.

Production Deployment Strategy

Overview

This document addresses the critical gap in our DSPy implementation plan regarding production deployment strategy. The original analysis emphasized production readiness, but our current plans lack specific deployment approaches, A/B testing frameworks, monitoring integration, and rollback mechanisms necessary for safe and effective DSPy deployment in production environments.

Problem Statement

Deploying DSPy optimization to production requires careful orchestration to ensure:

  1. Zero-Downtime Deployment: New features must not disrupt existing operations
  2. Risk Mitigation: Ability to quickly rollback if issues arise
  3. Performance Validation: Continuous monitoring of DSPy vs traditional execution
  4. Gradual Rollout: Phased deployment to minimize impact
  5. User Experience: Seamless transition for end users

Deployment Architecture

1. Phased Rollout Framework

Deployment Phases

defmodule Pipeline.DSPy.DeploymentPhases do
  @moduledoc """
  Manages phased rollout of DSPy features across different environments and user segments.
  """
  
  defstruct [
    :current_phase,
    :phase_config,
    :rollout_metrics,
    :rollout_schedule,
    :phase_gates
  ]
  
  @deployment_phases [
    :development,
    :staging,
    :canary,
    :limited_production,
    :full_production
  ]
  
  def start_link(opts \\ []) do
    GenServer.start_link(__MODULE__, opts, name: __MODULE__)
  end
  
  def get_current_phase do
    GenServer.call(__MODULE__, :get_current_phase)
  end
  
  def advance_to_next_phase(approval_metadata \\ %{}) do
    GenServer.call(__MODULE__, {:advance_phase, approval_metadata})
  end
  
  def rollback_to_previous_phase(reason) do
    GenServer.call(__MODULE__, {:rollback_phase, reason})
  end
  
  def get_phase_metrics(phase) do
    GenServer.call(__MODULE__, {:get_phase_metrics, phase})
  end
  
  def init(opts) do
    state = %__MODULE__{
      current_phase: :development,
      phase_config: load_phase_config(opts),
      rollout_metrics: %{},
      rollout_schedule: %{},
      phase_gates: initialize_phase_gates(opts)
    }
    
    {:ok, state}
  end
  
  def handle_call(:get_current_phase, _from, state) do
    {:reply, state.current_phase, state}
  end
  
  def handle_call({:advance_phase, approval_metadata}, _from, state) do
    case can_advance_phase?(state.current_phase, state) do
      {:ok, next_phase} ->
        case execute_phase_transition(state.current_phase, next_phase, state) do
          {:ok, new_state} ->
            Logger.info("Successfully advanced from #{state.current_phase} to #{next_phase}")
            
            # Record phase transition
            transition_record = %{
              from_phase: state.current_phase,
              to_phase: next_phase,
              timestamp: DateTime.utc_now(),
              approval_metadata: approval_metadata
            }
            
            record_phase_transition(transition_record)
            
            {:reply, {:ok, next_phase}, new_state}
          
          {:error, reason} ->
            Logger.error("Failed to advance to #{next_phase}: #{reason}")
            {:reply, {:error, reason}, state}
        end
      
      {:error, reason} ->
        {:reply, {:error, reason}, state}
    end
  end
  
  def handle_call({:rollback_phase, reason}, _from, state) do
    case get_previous_phase(state.current_phase) do
      {:ok, previous_phase} ->
        case execute_phase_rollback(state.current_phase, previous_phase, reason, state) do
          {:ok, new_state} ->
            Logger.warning("Rolled back from #{state.current_phase} to #{previous_phase}: #{reason}")
            
            # Record rollback
            rollback_record = %{
              from_phase: state.current_phase,
              to_phase: previous_phase,
              reason: reason,
              timestamp: DateTime.utc_now()
            }
            
            record_phase_rollback(rollback_record)
            
            {:reply, {:ok, previous_phase}, new_state}
          
          {:error, rollback_error} ->
            Logger.error("Failed to rollback to #{previous_phase}: #{rollback_error}")
            {:reply, {:error, rollback_error}, state}
        end
      
      {:error, reason} ->
        {:reply, {:error, reason}, state}
    end
  end
  
  defp can_advance_phase?(current_phase, state) do
    next_phase = get_next_phase(current_phase)
    
    case next_phase do
      {:ok, phase} ->
        # Check phase gates
        case check_phase_gates(current_phase, phase, state) do
          :ok ->
            {:ok, phase}
          
          {:error, reason} ->
            {:error, "Phase gate check failed: #{reason}"}
        end
      
      {:error, reason} ->
        {:error, reason}
    end
  end
  
  defp check_phase_gates(current_phase, next_phase, state) do
    gates = Map.get(state.phase_gates, {current_phase, next_phase}, [])
    
    Enum.reduce_while(gates, :ok, fn gate, _acc ->
      case execute_phase_gate(gate, current_phase, next_phase, state) do
        :ok ->
          {:cont, :ok}
        
        {:error, reason} ->
          {:halt, {:error, reason}}
      end
    end)
  end
  
  defp execute_phase_gate(gate, current_phase, next_phase, state) do
    case gate.type do
      :metrics_threshold ->
        check_metrics_threshold(gate, current_phase, state)
      
      :manual_approval ->
        check_manual_approval(gate, current_phase, next_phase)
      
      :automated_test ->
        run_automated_test(gate, current_phase, next_phase)
      
      :time_based ->
        check_time_based_gate(gate, current_phase, state)
      
      _ ->
        {:error, "Unknown gate type: #{gate.type}"}
    end
  end
  
  defp check_metrics_threshold(gate, current_phase, state) do
    current_metrics = get_phase_metrics(current_phase, state)
    
    case evaluate_metrics_against_threshold(current_metrics, gate.thresholds) do
      :passed ->
        :ok
      
      {:failed, failing_metrics} ->
        {:error, "Metrics threshold not met: #{inspect(failing_metrics)}"}
    end
  end
end

Phase Configuration

defmodule Pipeline.DSPy.PhaseConfig do
  @moduledoc """
  Configuration for different deployment phases.
  """
  
  def get_phase_config(phase) do
    case phase do
      :development ->
        %{
          dspy_enabled: true,
          user_percentage: 100,
          feature_flags: [:all_features],
          monitoring_level: :debug,
          rollback_threshold: %{
            error_rate: 0.1,
            performance_degradation: 0.3
          }
        }
      
      :staging ->
        %{
          dspy_enabled: true,
          user_percentage: 100,
          feature_flags: [:core_features],
          monitoring_level: :info,
          rollback_threshold: %{
            error_rate: 0.05,
            performance_degradation: 0.2
          }
        }
      
      :canary ->
        %{
          dspy_enabled: true,
          user_percentage: 1,
          feature_flags: [:core_features],
          monitoring_level: :warn,
          rollback_threshold: %{
            error_rate: 0.02,
            performance_degradation: 0.15
          }
        }
      
      :limited_production ->
        %{
          dspy_enabled: true,
          user_percentage: 10,
          feature_flags: [:core_features],
          monitoring_level: :warn,
          rollback_threshold: %{
            error_rate: 0.01,
            performance_degradation: 0.1
          }
        }
      
      :full_production ->
        %{
          dspy_enabled: true,
          user_percentage: 100,
          feature_flags: [:core_features],
          monitoring_level: :error,
          rollback_threshold: %{
            error_rate: 0.005,
            performance_degradation: 0.05
          }
        }
    end
  end
end

2. A/B Testing Framework

Experiment Management

defmodule Pipeline.DSPy.ExperimentManager do
  @moduledoc """
  Manages A/B testing experiments for DSPy features.
  """
  
  use GenServer
  
  defstruct [
    :active_experiments,
    :experiment_config,
    :experiment_results,
    :user_assignments
  ]
  
  def start_link(opts \\ []) do
    GenServer.start_link(__MODULE__, opts, name: __MODULE__)
  end
  
  def create_experiment(experiment_config) do
    GenServer.call(__MODULE__, {:create_experiment, experiment_config})
  end
  
  def get_user_assignment(user_id, experiment_id) do
    GenServer.call(__MODULE__, {:get_user_assignment, user_id, experiment_id})
  end
  
  def record_experiment_result(user_id, experiment_id, result) do
    GenServer.cast(__MODULE__, {:record_result, user_id, experiment_id, result})
  end
  
  def get_experiment_results(experiment_id) do
    GenServer.call(__MODULE__, {:get_experiment_results, experiment_id})
  end
  
  def init(opts) do
    state = %__MODULE__{
      active_experiments: %{},
      experiment_config: %{},
      experiment_results: %{},
      user_assignments: %{}
    }
    
    {:ok, state}
  end
  
  def handle_call({:create_experiment, experiment_config}, _from, state) do
    experiment_id = generate_experiment_id()
    
    # Validate experiment configuration
    case validate_experiment_config(experiment_config) do
      :ok ->
        # Create experiment
        experiment = %{
          id: experiment_id,
          config: experiment_config,
          status: :active,
          created_at: DateTime.utc_now(),
          participants: 0,
          results: %{}
        }
        
        new_active_experiments = Map.put(state.active_experiments, experiment_id, experiment)
        new_experiment_config = Map.put(state.experiment_config, experiment_id, experiment_config)
        
        new_state = %{
          state |
          active_experiments: new_active_experiments,
          experiment_config: new_experiment_config
        }
        
        {:reply, {:ok, experiment_id}, new_state}
      
      {:error, reason} ->
        {:reply, {:error, reason}, state}
    end
  end
  
  def handle_call({:get_user_assignment, user_id, experiment_id}, _from, state) do
    case Map.get(state.active_experiments, experiment_id) do
      nil ->
        {:reply, {:error, :experiment_not_found}, state}
      
      experiment ->
        # Check if user already has assignment
        assignment_key = {user_id, experiment_id}
        
        case Map.get(state.user_assignments, assignment_key) do
          nil ->
            # Create new assignment
            assignment = assign_user_to_group(user_id, experiment.config)
            
            new_user_assignments = Map.put(state.user_assignments, assignment_key, assignment)
            
            # Update participant count
            updated_experiment = %{experiment | participants: experiment.participants + 1}
            new_active_experiments = Map.put(state.active_experiments, experiment_id, updated_experiment)
            
            new_state = %{
              state |
              user_assignments: new_user_assignments,
              active_experiments: new_active_experiments
            }
            
            {:reply, {:ok, assignment}, new_state}
          
          existing_assignment ->
            {:reply, {:ok, existing_assignment}, state}
        end
    end
  end
  
  defp assign_user_to_group(user_id, experiment_config) do
    # Use consistent hashing to assign users to groups
    hash_value = :crypto.hash(:sha256, "#{user_id}#{experiment_config.seed}")
    |> :binary.decode_unsigned()
    
    # Calculate group based on hash and group weights
    group_weights = experiment_config.groups
    |> Enum.map(fn {group_name, group_config} -> {group_name, group_config.weight} end)
    
    total_weight = Enum.reduce(group_weights, 0, fn {_group, weight}, acc -> acc + weight end)
    
    normalized_hash = rem(hash_value, total_weight)
    
    {assigned_group, _} = Enum.reduce_while(group_weights, {nil, 0}, fn {group_name, weight}, {_current_group, cumulative_weight} ->
      new_cumulative_weight = cumulative_weight + weight
      
      if normalized_hash < new_cumulative_weight do
        {:halt, {group_name, new_cumulative_weight}}
      else
        {:cont, {group_name, new_cumulative_weight}}
      end
    end)
    
    %{
      user_id: user_id,
      experiment_id: experiment_config.id,
      group: assigned_group,
      assigned_at: DateTime.utc_now()
    }
  end
end

Execution Flow with A/B Testing

defmodule Pipeline.DSPy.ABTestingExecutor do
  @moduledoc """
  Executor that routes requests based on A/B testing assignments.
  """
  
  def execute_step_with_ab_testing(step, context, user_id \\ nil) do
    # Check if there's an active experiment for this step type
    case get_active_experiment_for_step(step) do
      {:ok, experiment_id} ->
        # Get user assignment
        user_id = user_id || extract_user_id(context)
        
        case Pipeline.DSPy.ExperimentManager.get_user_assignment(user_id, experiment_id) do
          {:ok, assignment} ->
            execute_with_assignment(step, context, assignment, experiment_id)
          
          {:error, reason} ->
            Logger.warning("Failed to get A/B test assignment: #{reason}, using default")
            execute_default_step(step, context)
        end
      
      :no_experiment ->
        execute_default_step(step, context)
    end
  end
  
  defp execute_with_assignment(step, context, assignment, experiment_id) do
    start_time = System.monotonic_time()
    
    case assignment.group do
      :control ->
        # Execute with traditional approach
        result = execute_traditional_step(step, context)
        
        # Record result for experiment
        execution_metrics = %{
          execution_time: System.monotonic_time() - start_time,
          success: elem(result, 0) == :ok,
          method: :traditional
        }
        
        record_experiment_result(assignment.user_id, experiment_id, execution_metrics)
        
        result
      
      :treatment ->
        # Execute with DSPy optimization
        result = execute_dspy_step(step, context)
        
        # Record result for experiment
        execution_metrics = %{
          execution_time: System.monotonic_time() - start_time,
          success: elem(result, 0) == :ok,
          method: :dspy
        }
        
        record_experiment_result(assignment.user_id, experiment_id, execution_metrics)
        
        result
      
      _ ->
        Logger.warning("Unknown experiment group: #{assignment.group}")
        execute_default_step(step, context)
    end
  end
  
  defp record_experiment_result(user_id, experiment_id, metrics) do
    Pipeline.DSPy.ExperimentManager.record_experiment_result(user_id, experiment_id, metrics)
  end
end

3. Monitoring and Alerting System

Performance Monitoring

defmodule Pipeline.DSPy.ProductionMonitor do
  @moduledoc """
  Monitors DSPy performance in production and triggers alerts.
  """
  
  use GenServer
  
  defstruct [
    :monitoring_config,
    :performance_metrics,
    :alert_thresholds,
    :alert_history,
    :dashboard_metrics
  ]
  
  def start_link(opts \\ []) do
    GenServer.start_link(__MODULE__, opts, name: __MODULE__)
  end
  
  def record_execution_metrics(execution_metrics) do
    GenServer.cast(__MODULE__, {:record_execution_metrics, execution_metrics})
  end
  
  def get_performance_dashboard do
    GenServer.call(__MODULE__, :get_performance_dashboard)
  end
  
  def get_alert_status do
    GenServer.call(__MODULE__, :get_alert_status)
  end
  
  def init(opts) do
    state = %__MODULE__{
      monitoring_config: load_monitoring_config(opts),
      performance_metrics: initialize_metrics_store(),
      alert_thresholds: load_alert_thresholds(opts),
      alert_history: [],
      dashboard_metrics: %{}
    }
    
    # Start periodic monitoring
    schedule_monitoring_cycle()
    
    {:ok, state}
  end
  
  def handle_cast({:record_execution_metrics, execution_metrics}, state) do
    # Update performance metrics
    updated_metrics = update_performance_metrics(execution_metrics, state.performance_metrics)
    
    # Check for alerts
    alerts = check_for_alerts(execution_metrics, updated_metrics, state.alert_thresholds)
    
    # Send alerts if any
    if not Enum.empty?(alerts) do
      send_alerts(alerts)
    end
    
    # Update dashboard metrics
    updated_dashboard = update_dashboard_metrics(execution_metrics, state.dashboard_metrics)
    
    new_state = %{
      state |
      performance_metrics: updated_metrics,
      alert_history: alerts ++ state.alert_history,
      dashboard_metrics: updated_dashboard
    }
    
    {:noreply, new_state}
  end
  
  def handle_info(:monitoring_cycle, state) do
    # Perform periodic monitoring tasks
    new_state = perform_monitoring_cycle(state)
    
    schedule_monitoring_cycle()
    
    {:noreply, new_state}
  end
  
  defp perform_monitoring_cycle(state) do
    # Calculate aggregated metrics
    aggregated_metrics = calculate_aggregated_metrics(state.performance_metrics)
    
    # Check system health
    health_status = check_system_health(aggregated_metrics)
    
    # Update dashboard
    updated_dashboard = update_dashboard_with_aggregated_metrics(aggregated_metrics, state.dashboard_metrics)
    
    # Check for trend-based alerts
    trend_alerts = check_trend_alerts(aggregated_metrics, state.alert_thresholds)
    
    if not Enum.empty?(trend_alerts) do
      send_alerts(trend_alerts)
    end
    
    %{
      state |
      dashboard_metrics: updated_dashboard,
      alert_history: trend_alerts ++ state.alert_history
    }
  end
  
  defp check_for_alerts(execution_metrics, performance_metrics, alert_thresholds) do
    alerts = []
    
    # Check error rate
    current_error_rate = calculate_current_error_rate(performance_metrics)
    if current_error_rate > alert_thresholds.error_rate do
      alert = create_alert(:error_rate, current_error_rate, alert_thresholds.error_rate)
      alerts = [alert | alerts]
    end
    
    # Check performance degradation
    performance_degradation = calculate_performance_degradation(performance_metrics)
    if performance_degradation > alert_thresholds.performance_degradation do
      alert = create_alert(:performance_degradation, performance_degradation, alert_thresholds.performance_degradation)
      alerts = [alert | alerts]
    end
    
    # Check response time
    current_response_time = execution_metrics.execution_time
    if current_response_time > alert_thresholds.response_time do
      alert = create_alert(:response_time, current_response_time, alert_thresholds.response_time)
      alerts = [alert | alerts]
    end
    
    alerts
  end
  
  defp create_alert(alert_type, current_value, threshold) do
    %{
      type: alert_type,
      current_value: current_value,
      threshold: threshold,
      severity: calculate_alert_severity(current_value, threshold),
      timestamp: DateTime.utc_now(),
      message: generate_alert_message(alert_type, current_value, threshold)
    }
  end
  
  defp send_alerts(alerts) do
    Enum.each(alerts, fn alert ->
      # Log alert
      Logger.warning("Production alert: #{alert.message}")
      
      # Send to external monitoring systems
      send_to_monitoring_system(alert)
      
      # Send notifications based on severity
      case alert.severity do
        :critical ->
          send_critical_notification(alert)
        
        :high ->
          send_high_priority_notification(alert)
        
        :medium ->
          send_medium_priority_notification(alert)
        
        :low ->
          # Log only, no external notification
          :ok
      end
    end)
  end
end

Dashboard Integration

defmodule Pipeline.DSPy.ProductionDashboard do
  @moduledoc """
  Provides real-time dashboard metrics for DSPy production monitoring.
  """
  
  def get_dashboard_data do
    %{
      overview: get_overview_metrics(),
      performance: get_performance_metrics(),
      experiments: get_experiment_metrics(),
      alerts: get_alert_metrics(),
      deployment: get_deployment_metrics()
    }
  end
  
  defp get_overview_metrics do
    %{
      total_executions: get_total_executions(),
      dspy_executions: get_dspy_executions(),
      traditional_executions: get_traditional_executions(),
      success_rate: get_overall_success_rate(),
      average_response_time: get_average_response_time()
    }
  end
  
  defp get_performance_metrics do
    %{
      dspy_performance: %{
        success_rate: get_dspy_success_rate(),
        average_response_time: get_dspy_average_response_time(),
        optimization_effectiveness: get_optimization_effectiveness()
      },
      traditional_performance: %{
        success_rate: get_traditional_success_rate(),
        average_response_time: get_traditional_average_response_time()
      },
      comparison: %{
        performance_improvement: calculate_performance_improvement(),
        cost_comparison: calculate_cost_comparison(),
        quality_improvement: calculate_quality_improvement()
      }
    }
  end
  
  defp get_experiment_metrics do
    active_experiments = Pipeline.DSPy.ExperimentManager.get_active_experiments()
    
    Enum.map(active_experiments, fn experiment ->
      %{
        id: experiment.id,
        name: experiment.config.name,
        status: experiment.status,
        participants: experiment.participants,
        results: get_experiment_results_summary(experiment.id),
        statistical_significance: calculate_statistical_significance(experiment.id)
      }
    end)
  end
  
  defp get_alert_metrics do
    %{
      active_alerts: get_active_alerts(),
      recent_alerts: get_recent_alerts(),
      alert_trends: get_alert_trends()
    }
  end
  
  defp get_deployment_metrics do
    %{
      current_phase: Pipeline.DSPy.DeploymentPhases.get_current_phase(),
      phase_metrics: get_current_phase_metrics(),
      rollout_percentage: get_rollout_percentage(),
      canary_health: get_canary_health_status()
    }
  end
end

4. Rollback Mechanisms

Automated Rollback System

defmodule Pipeline.DSPy.AutoRollback do
  @moduledoc """
  Automated rollback system that triggers rollbacks based on monitoring metrics.
  """
  
  use GenServer
  
  defstruct [
    :rollback_config,
    :monitoring_subscriptions,
    :rollback_history,
    :rollback_thresholds
  ]
  
  def start_link(opts \\ []) do
    GenServer.start_link(__MODULE__, opts, name: __MODULE__)
  end
  
  def trigger_manual_rollback(reason, approval_metadata) do
    GenServer.call(__MODULE__, {:manual_rollback, reason, approval_metadata})
  end
  
  def get_rollback_status do
    GenServer.call(__MODULE__, :get_rollback_status)
  end
  
  def init(opts) do
    state = %__MODULE__{
      rollback_config: load_rollback_config(opts),
      monitoring_subscriptions: subscribe_to_monitoring_events(),
      rollback_history: [],
      rollback_thresholds: load_rollback_thresholds(opts)
    }
    
    {:ok, state}
  end
  
  def handle_info({:monitoring_alert, alert}, state) do
    # Check if alert should trigger rollback
    case should_trigger_rollback?(alert, state.rollback_thresholds) do
      true ->
        Logger.warning("Triggering automatic rollback due to alert: #{alert.type}")
        
        case execute_rollback("Automatic rollback due to #{alert.type}", alert, state) do
          {:ok, new_state} ->
            {:noreply, new_state}
          
          {:error, reason} ->
            Logger.error("Failed to execute automatic rollback: #{reason}")
            {:noreply, state}
        end
      
      false ->
        {:noreply, state}
    end
  end
  
  def handle_call({:manual_rollback, reason, approval_metadata}, _from, state) do
    case execute_rollback(reason, approval_metadata, state) do
      {:ok, new_state} ->
        {:reply, :ok, new_state}
      
      {:error, reason} ->
        {:reply, {:error, reason}, state}
    end
  end
  
  defp should_trigger_rollback?(alert, rollback_thresholds) do
    case alert.type do
      :error_rate ->
        alert.current_value > rollback_thresholds.error_rate and
        alert.severity in [:critical, :high]
      
      :performance_degradation ->
        alert.current_value > rollback_thresholds.performance_degradation and
        alert.severity in [:critical, :high]
      
      :system_failure ->
        true  # Always rollback on system failures
      
      _ ->
        false
    end
  end
  
  defp execute_rollback(reason, metadata, state) do
    rollback_start_time = DateTime.utc_now()
    
    try do
      # Step 1: Disable DSPy features
      disable_dspy_features()
      
      # Step 2: Rollback to previous deployment phase
      case Pipeline.DSPy.DeploymentPhases.rollback_to_previous_phase(reason) do
        {:ok, previous_phase} ->
          # Step 3: Update configuration
          update_rollback_configuration(previous_phase)
          
          # Step 4: Clear caches
          clear_optimization_caches()
          
          # Step 5: Notify monitoring systems
          notify_rollback_completion(reason, metadata)
          
          # Record rollback
          rollback_record = %{
            reason: reason,
            metadata: metadata,
            started_at: rollback_start_time,
            completed_at: DateTime.utc_now(),
            previous_phase: previous_phase,
            status: :completed
          }
          
          new_rollback_history = [rollback_record | state.rollback_history]
          new_state = %{state | rollback_history: new_rollback_history}
          
          Logger.info("Rollback completed successfully")
          {:ok, new_state}
        
        {:error, reason} ->
          Logger.error("Failed to rollback deployment phase: #{reason}")
          {:error, reason}
      end
    rescue
      error ->
        Logger.error("Rollback failed with error: #{inspect(error)}")
        {:error, "Rollback execution failed: #{Exception.message(error)}"}
    end
  end
  
  defp disable_dspy_features do
    # Disable DSPy features across all components
    Pipeline.DSPy.FeatureFlags.disable_all_dspy_features()
    
    # Update configuration to disable DSPy
    Pipeline.Enhanced.ConfigurationSystem.update_global_config(%{
      "dspy_enabled" => false,
      "fallback_to_traditional" => true
    })
  end
  
  defp update_rollback_configuration(previous_phase) do
    # Update configuration for rollback phase
    phase_config = Pipeline.DSPy.PhaseConfig.get_phase_config(previous_phase)
    
    Pipeline.Enhanced.ConfigurationSystem.apply_phase_config(phase_config)
  end
  
  defp clear_optimization_caches do
    # Clear all optimization caches to ensure clean state
    Pipeline.DSPy.OptimizationCache.clear_all()
    Pipeline.DSPy.HierarchicalCache.clear_all()
  end
  
  defp notify_rollback_completion(reason, metadata) do
    # Send rollback notification to monitoring systems
    rollback_notification = %{
      event: :rollback_completed,
      reason: reason,
      metadata: metadata,
      timestamp: DateTime.utc_now()
    }
    
    Pipeline.Monitoring.send_event(rollback_notification)
  end
end

Manual Rollback Procedures

defmodule Pipeline.DSPy.ManualRollback do
  @moduledoc """
  Manual rollback procedures for emergency situations.
  """
  
  def emergency_rollback(reason, operator_id) do
    Logger.warning("Emergency rollback initiated by #{operator_id}: #{reason}")
    
    # Immediate actions
    immediate_actions = [
      {:disable_dspy_features, &disable_dspy_features_immediately/0},
      {:activate_circuit_breaker, &activate_emergency_circuit_breaker/0},
      {:notify_team, &send_emergency_notification/2}
    ]
    
    # Execute immediate actions
    Enum.each(immediate_actions, fn {action_name, action_fn} ->
      case action_fn.() do
        :ok ->
          Logger.info("Emergency action #{action_name} completed")
        
        {:error, error} ->
          Logger.error("Emergency action #{action_name} failed: #{error}")
      end
    end)
    
    # Start full rollback process
    Pipeline.DSPy.AutoRollback.trigger_manual_rollback(reason, %{
      operator_id: operator_id,
      rollback_type: :emergency,
      initiated_at: DateTime.utc_now()
    })
  end
  
  def graceful_rollback(reason, operator_id, rollback_options \\ []) do
    Logger.info("Graceful rollback initiated by #{operator_id}: #{reason}")
    
    # Pre-rollback checks
    case perform_pre_rollback_checks() do
      :ok ->
        # Execute graceful rollback
        execute_graceful_rollback(reason, operator_id, rollback_options)
      
      {:error, reason} ->
        Logger.error("Pre-rollback checks failed: #{reason}")
        {:error, reason}
    end
  end
  
  defp execute_graceful_rollback(reason, operator_id, rollback_options) do
    # Drain traffic gradually
    if Keyword.get(rollback_options, :drain_traffic, true) do
      drain_traffic_gradually()
    end
    
    # Wait for in-flight requests to complete
    wait_for_inflight_requests()
    
    # Execute rollback
    Pipeline.DSPy.AutoRollback.trigger_manual_rollback(reason, %{
      operator_id: operator_id,
      rollback_type: :graceful,
      rollback_options: rollback_options,
      initiated_at: DateTime.utc_now()
    })
  end
  
  defp disable_dspy_features_immediately do
    # Immediately disable all DSPy features
    :ets.insert(:dspy_feature_flags, {:dspy_enabled, false})
    :ets.insert(:dspy_feature_flags, {:optimization_enabled, false})
    :ets.insert(:dspy_feature_flags, {:fallback_to_traditional, true})
    
    # Broadcast to all nodes
    :rpc.multicall(Node.list(), :ets, :insert, [:dspy_feature_flags, {:dspy_enabled, false}])
    
    :ok
  end
  
  defp activate_emergency_circuit_breaker do
    # Activate circuit breaker to prevent DSPy execution
    Pipeline.DSPy.CircuitBreaker.activate_emergency_mode()
    
    :ok
  end
  
  defp send_emergency_notification(reason, operator_id) do
    # Send immediate notification to on-call team
    notification = %{
      alert_type: :emergency_rollback,
      reason: reason,
      operator_id: operator_id,
      timestamp: DateTime.utc_now()
    }
    
    Pipeline.Monitoring.send_critical_alert(notification)
    
    :ok
  end
end

5. Configuration Management

Production Configuration

# production_deployment.yaml
deployment:
  phases:
    canary:
      user_percentage: 1
      duration: 24h
      success_criteria:
        error_rate: < 0.01
        performance_degradation: < 0.1
        user_satisfaction: > 0.95
    
    limited_production:
      user_percentage: 10
      duration: 72h
      success_criteria:
        error_rate: < 0.005
        performance_degradation: < 0.05
        user_satisfaction: > 0.98
    
    full_production:
      user_percentage: 100
      duration: null
      success_criteria:
        error_rate: < 0.001
        performance_degradation: < 0.02
        user_satisfaction: > 0.99

  experiments:
    dspy_vs_traditional:
      enabled: true
      groups:
        control:
          weight: 50
          configuration:
            dspy_enabled: false
        treatment:
          weight: 50
          configuration:
            dspy_enabled: true
      
      success_metrics:
        - accuracy
        - response_time
        - cost_per_request
        - user_satisfaction
      
      duration: 30d
      minimum_sample_size: 1000

  monitoring:
    alerts:
      error_rate:
        warning: 0.01
        critical: 0.02
      performance_degradation:
        warning: 0.1
        critical: 0.2
      response_time:
        warning: 5000ms
        critical: 10000ms
    
    dashboards:
      - production_overview
      - experiment_results
      - performance_comparison
      - alert_summary

  rollback:
    automatic_triggers:
      - error_rate > 0.02
      - performance_degradation > 0.3
      - system_failure
    
    manual_approval_required: false
    
    emergency_contacts:
      - team: engineering
        oncall: true
      - team: product
        oncall: false

6. Testing and Validation

Production Readiness Tests

defmodule Pipeline.DSPy.ProductionReadinessTest do
  use ExUnit.Case
  
  describe "Deployment Phases" do
    test "can advance through all deployment phases" do
      # Start from development
      {:ok, current_phase} = Pipeline.DSPy.DeploymentPhases.get_current_phase()
      assert current_phase == :development
      
      # Advance to staging
      {:ok, next_phase} = Pipeline.DSPy.DeploymentPhases.advance_to_next_phase()
      assert next_phase == :staging
      
      # Continue through all phases
      phases = [:canary, :limited_production, :full_production]
      
      Enum.each(phases, fn expected_phase ->
        {:ok, phase} = Pipeline.DSPy.DeploymentPhases.advance_to_next_phase()
        assert phase == expected_phase
      end)
    end
    
    test "rollback works correctly" do
      # Advance to a later phase
      Pipeline.DSPy.DeploymentPhases.advance_to_next_phase()
      Pipeline.DSPy.DeploymentPhases.advance_to_next_phase()
      
      # Rollback
      {:ok, previous_phase} = Pipeline.DSPy.DeploymentPhases.rollback_to_previous_phase("Test rollback")
      assert previous_phase == :staging
    end
  end
  
  describe "A/B Testing" do
    test "users are consistently assigned to groups" do
      experiment_config = create_test_experiment_config()
      {:ok, experiment_id} = Pipeline.DSPy.ExperimentManager.create_experiment(experiment_config)
      
      user_id = "test_user_123"
      
      # Get assignment multiple times
      {:ok, assignment1} = Pipeline.DSPy.ExperimentManager.get_user_assignment(user_id, experiment_id)
      {:ok, assignment2} = Pipeline.DSPy.ExperimentManager.get_user_assignment(user_id, experiment_id)
      
      # Should be the same
      assert assignment1.group == assignment2.group
    end
  end
  
  describe "Monitoring and Alerts" do
    test "alerts are triggered when thresholds are exceeded" do
      # Simulate high error rate
      high_error_metrics = %{
        error_rate: 0.05,
        execution_time: 1000,
        success: false
      }
      
      Pipeline.DSPy.ProductionMonitor.record_execution_metrics(high_error_metrics)
      
      # Check that alert was triggered
      alerts = Pipeline.DSPy.ProductionMonitor.get_recent_alerts()
      assert Enum.any?(alerts, fn alert -> alert.type == :error_rate end)
    end
  end
end

This comprehensive production deployment strategy provides a robust framework for safely deploying DSPy features to production while maintaining system reliability and user experience.