Production Deployment Strategy
Overview
This document addresses the critical gap in our DSPy implementation plan regarding production deployment strategy. The original analysis emphasized production readiness, but our current plans lack specific deployment approaches, A/B testing frameworks, monitoring integration, and rollback mechanisms necessary for safe and effective DSPy deployment in production environments.
Problem Statement
Deploying DSPy optimization to production requires careful orchestration to ensure:
- Zero-Downtime Deployment: New features must not disrupt existing operations
- Risk Mitigation: Ability to quickly rollback if issues arise
- Performance Validation: Continuous monitoring of DSPy vs traditional execution
- Gradual Rollout: Phased deployment to minimize impact
- User Experience: Seamless transition for end users
Deployment Architecture
1. Phased Rollout Framework
Deployment Phases
defmodule Pipeline.DSPy.DeploymentPhases do
@moduledoc """
Manages phased rollout of DSPy features across different environments and user segments.
"""
defstruct [
:current_phase,
:phase_config,
:rollout_metrics,
:rollout_schedule,
:phase_gates
]
@deployment_phases [
:development,
:staging,
:canary,
:limited_production,
:full_production
]
def start_link(opts \\ []) do
GenServer.start_link(__MODULE__, opts, name: __MODULE__)
end
def get_current_phase do
GenServer.call(__MODULE__, :get_current_phase)
end
def advance_to_next_phase(approval_metadata \\ %{}) do
GenServer.call(__MODULE__, {:advance_phase, approval_metadata})
end
def rollback_to_previous_phase(reason) do
GenServer.call(__MODULE__, {:rollback_phase, reason})
end
def get_phase_metrics(phase) do
GenServer.call(__MODULE__, {:get_phase_metrics, phase})
end
def init(opts) do
state = %__MODULE__{
current_phase: :development,
phase_config: load_phase_config(opts),
rollout_metrics: %{},
rollout_schedule: %{},
phase_gates: initialize_phase_gates(opts)
}
{:ok, state}
end
def handle_call(:get_current_phase, _from, state) do
{:reply, state.current_phase, state}
end
def handle_call({:advance_phase, approval_metadata}, _from, state) do
case can_advance_phase?(state.current_phase, state) do
{:ok, next_phase} ->
case execute_phase_transition(state.current_phase, next_phase, state) do
{:ok, new_state} ->
Logger.info("Successfully advanced from #{state.current_phase} to #{next_phase}")
# Record phase transition
transition_record = %{
from_phase: state.current_phase,
to_phase: next_phase,
timestamp: DateTime.utc_now(),
approval_metadata: approval_metadata
}
record_phase_transition(transition_record)
{:reply, {:ok, next_phase}, new_state}
{:error, reason} ->
Logger.error("Failed to advance to #{next_phase}: #{reason}")
{:reply, {:error, reason}, state}
end
{:error, reason} ->
{:reply, {:error, reason}, state}
end
end
def handle_call({:rollback_phase, reason}, _from, state) do
case get_previous_phase(state.current_phase) do
{:ok, previous_phase} ->
case execute_phase_rollback(state.current_phase, previous_phase, reason, state) do
{:ok, new_state} ->
Logger.warning("Rolled back from #{state.current_phase} to #{previous_phase}: #{reason}")
# Record rollback
rollback_record = %{
from_phase: state.current_phase,
to_phase: previous_phase,
reason: reason,
timestamp: DateTime.utc_now()
}
record_phase_rollback(rollback_record)
{:reply, {:ok, previous_phase}, new_state}
{:error, rollback_error} ->
Logger.error("Failed to rollback to #{previous_phase}: #{rollback_error}")
{:reply, {:error, rollback_error}, state}
end
{:error, reason} ->
{:reply, {:error, reason}, state}
end
end
defp can_advance_phase?(current_phase, state) do
next_phase = get_next_phase(current_phase)
case next_phase do
{:ok, phase} ->
# Check phase gates
case check_phase_gates(current_phase, phase, state) do
:ok ->
{:ok, phase}
{:error, reason} ->
{:error, "Phase gate check failed: #{reason}"}
end
{:error, reason} ->
{:error, reason}
end
end
defp check_phase_gates(current_phase, next_phase, state) do
gates = Map.get(state.phase_gates, {current_phase, next_phase}, [])
Enum.reduce_while(gates, :ok, fn gate, _acc ->
case execute_phase_gate(gate, current_phase, next_phase, state) do
:ok ->
{:cont, :ok}
{:error, reason} ->
{:halt, {:error, reason}}
end
end)
end
defp execute_phase_gate(gate, current_phase, next_phase, state) do
case gate.type do
:metrics_threshold ->
check_metrics_threshold(gate, current_phase, state)
:manual_approval ->
check_manual_approval(gate, current_phase, next_phase)
:automated_test ->
run_automated_test(gate, current_phase, next_phase)
:time_based ->
check_time_based_gate(gate, current_phase, state)
_ ->
{:error, "Unknown gate type: #{gate.type}"}
end
end
defp check_metrics_threshold(gate, current_phase, state) do
current_metrics = get_phase_metrics(current_phase, state)
case evaluate_metrics_against_threshold(current_metrics, gate.thresholds) do
:passed ->
:ok
{:failed, failing_metrics} ->
{:error, "Metrics threshold not met: #{inspect(failing_metrics)}"}
end
end
end
Phase Configuration
defmodule Pipeline.DSPy.PhaseConfig do
@moduledoc """
Configuration for different deployment phases.
"""
def get_phase_config(phase) do
case phase do
:development ->
%{
dspy_enabled: true,
user_percentage: 100,
feature_flags: [:all_features],
monitoring_level: :debug,
rollback_threshold: %{
error_rate: 0.1,
performance_degradation: 0.3
}
}
:staging ->
%{
dspy_enabled: true,
user_percentage: 100,
feature_flags: [:core_features],
monitoring_level: :info,
rollback_threshold: %{
error_rate: 0.05,
performance_degradation: 0.2
}
}
:canary ->
%{
dspy_enabled: true,
user_percentage: 1,
feature_flags: [:core_features],
monitoring_level: :warn,
rollback_threshold: %{
error_rate: 0.02,
performance_degradation: 0.15
}
}
:limited_production ->
%{
dspy_enabled: true,
user_percentage: 10,
feature_flags: [:core_features],
monitoring_level: :warn,
rollback_threshold: %{
error_rate: 0.01,
performance_degradation: 0.1
}
}
:full_production ->
%{
dspy_enabled: true,
user_percentage: 100,
feature_flags: [:core_features],
monitoring_level: :error,
rollback_threshold: %{
error_rate: 0.005,
performance_degradation: 0.05
}
}
end
end
end
2. A/B Testing Framework
Experiment Management
defmodule Pipeline.DSPy.ExperimentManager do
@moduledoc """
Manages A/B testing experiments for DSPy features.
"""
use GenServer
defstruct [
:active_experiments,
:experiment_config,
:experiment_results,
:user_assignments
]
def start_link(opts \\ []) do
GenServer.start_link(__MODULE__, opts, name: __MODULE__)
end
def create_experiment(experiment_config) do
GenServer.call(__MODULE__, {:create_experiment, experiment_config})
end
def get_user_assignment(user_id, experiment_id) do
GenServer.call(__MODULE__, {:get_user_assignment, user_id, experiment_id})
end
def record_experiment_result(user_id, experiment_id, result) do
GenServer.cast(__MODULE__, {:record_result, user_id, experiment_id, result})
end
def get_experiment_results(experiment_id) do
GenServer.call(__MODULE__, {:get_experiment_results, experiment_id})
end
def init(opts) do
state = %__MODULE__{
active_experiments: %{},
experiment_config: %{},
experiment_results: %{},
user_assignments: %{}
}
{:ok, state}
end
def handle_call({:create_experiment, experiment_config}, _from, state) do
experiment_id = generate_experiment_id()
# Validate experiment configuration
case validate_experiment_config(experiment_config) do
:ok ->
# Create experiment
experiment = %{
id: experiment_id,
config: experiment_config,
status: :active,
created_at: DateTime.utc_now(),
participants: 0,
results: %{}
}
new_active_experiments = Map.put(state.active_experiments, experiment_id, experiment)
new_experiment_config = Map.put(state.experiment_config, experiment_id, experiment_config)
new_state = %{
state |
active_experiments: new_active_experiments,
experiment_config: new_experiment_config
}
{:reply, {:ok, experiment_id}, new_state}
{:error, reason} ->
{:reply, {:error, reason}, state}
end
end
def handle_call({:get_user_assignment, user_id, experiment_id}, _from, state) do
case Map.get(state.active_experiments, experiment_id) do
nil ->
{:reply, {:error, :experiment_not_found}, state}
experiment ->
# Check if user already has assignment
assignment_key = {user_id, experiment_id}
case Map.get(state.user_assignments, assignment_key) do
nil ->
# Create new assignment
assignment = assign_user_to_group(user_id, experiment.config)
new_user_assignments = Map.put(state.user_assignments, assignment_key, assignment)
# Update participant count
updated_experiment = %{experiment | participants: experiment.participants + 1}
new_active_experiments = Map.put(state.active_experiments, experiment_id, updated_experiment)
new_state = %{
state |
user_assignments: new_user_assignments,
active_experiments: new_active_experiments
}
{:reply, {:ok, assignment}, new_state}
existing_assignment ->
{:reply, {:ok, existing_assignment}, state}
end
end
end
defp assign_user_to_group(user_id, experiment_config) do
# Use consistent hashing to assign users to groups
hash_value = :crypto.hash(:sha256, "#{user_id}#{experiment_config.seed}")
|> :binary.decode_unsigned()
# Calculate group based on hash and group weights
group_weights = experiment_config.groups
|> Enum.map(fn {group_name, group_config} -> {group_name, group_config.weight} end)
total_weight = Enum.reduce(group_weights, 0, fn {_group, weight}, acc -> acc + weight end)
normalized_hash = rem(hash_value, total_weight)
{assigned_group, _} = Enum.reduce_while(group_weights, {nil, 0}, fn {group_name, weight}, {_current_group, cumulative_weight} ->
new_cumulative_weight = cumulative_weight + weight
if normalized_hash < new_cumulative_weight do
{:halt, {group_name, new_cumulative_weight}}
else
{:cont, {group_name, new_cumulative_weight}}
end
end)
%{
user_id: user_id,
experiment_id: experiment_config.id,
group: assigned_group,
assigned_at: DateTime.utc_now()
}
end
end
Execution Flow with A/B Testing
defmodule Pipeline.DSPy.ABTestingExecutor do
@moduledoc """
Executor that routes requests based on A/B testing assignments.
"""
def execute_step_with_ab_testing(step, context, user_id \\ nil) do
# Check if there's an active experiment for this step type
case get_active_experiment_for_step(step) do
{:ok, experiment_id} ->
# Get user assignment
user_id = user_id || extract_user_id(context)
case Pipeline.DSPy.ExperimentManager.get_user_assignment(user_id, experiment_id) do
{:ok, assignment} ->
execute_with_assignment(step, context, assignment, experiment_id)
{:error, reason} ->
Logger.warning("Failed to get A/B test assignment: #{reason}, using default")
execute_default_step(step, context)
end
:no_experiment ->
execute_default_step(step, context)
end
end
defp execute_with_assignment(step, context, assignment, experiment_id) do
start_time = System.monotonic_time()
case assignment.group do
:control ->
# Execute with traditional approach
result = execute_traditional_step(step, context)
# Record result for experiment
execution_metrics = %{
execution_time: System.monotonic_time() - start_time,
success: elem(result, 0) == :ok,
method: :traditional
}
record_experiment_result(assignment.user_id, experiment_id, execution_metrics)
result
:treatment ->
# Execute with DSPy optimization
result = execute_dspy_step(step, context)
# Record result for experiment
execution_metrics = %{
execution_time: System.monotonic_time() - start_time,
success: elem(result, 0) == :ok,
method: :dspy
}
record_experiment_result(assignment.user_id, experiment_id, execution_metrics)
result
_ ->
Logger.warning("Unknown experiment group: #{assignment.group}")
execute_default_step(step, context)
end
end
defp record_experiment_result(user_id, experiment_id, metrics) do
Pipeline.DSPy.ExperimentManager.record_experiment_result(user_id, experiment_id, metrics)
end
end
3. Monitoring and Alerting System
Performance Monitoring
defmodule Pipeline.DSPy.ProductionMonitor do
@moduledoc """
Monitors DSPy performance in production and triggers alerts.
"""
use GenServer
defstruct [
:monitoring_config,
:performance_metrics,
:alert_thresholds,
:alert_history,
:dashboard_metrics
]
def start_link(opts \\ []) do
GenServer.start_link(__MODULE__, opts, name: __MODULE__)
end
def record_execution_metrics(execution_metrics) do
GenServer.cast(__MODULE__, {:record_execution_metrics, execution_metrics})
end
def get_performance_dashboard do
GenServer.call(__MODULE__, :get_performance_dashboard)
end
def get_alert_status do
GenServer.call(__MODULE__, :get_alert_status)
end
def init(opts) do
state = %__MODULE__{
monitoring_config: load_monitoring_config(opts),
performance_metrics: initialize_metrics_store(),
alert_thresholds: load_alert_thresholds(opts),
alert_history: [],
dashboard_metrics: %{}
}
# Start periodic monitoring
schedule_monitoring_cycle()
{:ok, state}
end
def handle_cast({:record_execution_metrics, execution_metrics}, state) do
# Update performance metrics
updated_metrics = update_performance_metrics(execution_metrics, state.performance_metrics)
# Check for alerts
alerts = check_for_alerts(execution_metrics, updated_metrics, state.alert_thresholds)
# Send alerts if any
if not Enum.empty?(alerts) do
send_alerts(alerts)
end
# Update dashboard metrics
updated_dashboard = update_dashboard_metrics(execution_metrics, state.dashboard_metrics)
new_state = %{
state |
performance_metrics: updated_metrics,
alert_history: alerts ++ state.alert_history,
dashboard_metrics: updated_dashboard
}
{:noreply, new_state}
end
def handle_info(:monitoring_cycle, state) do
# Perform periodic monitoring tasks
new_state = perform_monitoring_cycle(state)
schedule_monitoring_cycle()
{:noreply, new_state}
end
defp perform_monitoring_cycle(state) do
# Calculate aggregated metrics
aggregated_metrics = calculate_aggregated_metrics(state.performance_metrics)
# Check system health
health_status = check_system_health(aggregated_metrics)
# Update dashboard
updated_dashboard = update_dashboard_with_aggregated_metrics(aggregated_metrics, state.dashboard_metrics)
# Check for trend-based alerts
trend_alerts = check_trend_alerts(aggregated_metrics, state.alert_thresholds)
if not Enum.empty?(trend_alerts) do
send_alerts(trend_alerts)
end
%{
state |
dashboard_metrics: updated_dashboard,
alert_history: trend_alerts ++ state.alert_history
}
end
defp check_for_alerts(execution_metrics, performance_metrics, alert_thresholds) do
alerts = []
# Check error rate
current_error_rate = calculate_current_error_rate(performance_metrics)
if current_error_rate > alert_thresholds.error_rate do
alert = create_alert(:error_rate, current_error_rate, alert_thresholds.error_rate)
alerts = [alert | alerts]
end
# Check performance degradation
performance_degradation = calculate_performance_degradation(performance_metrics)
if performance_degradation > alert_thresholds.performance_degradation do
alert = create_alert(:performance_degradation, performance_degradation, alert_thresholds.performance_degradation)
alerts = [alert | alerts]
end
# Check response time
current_response_time = execution_metrics.execution_time
if current_response_time > alert_thresholds.response_time do
alert = create_alert(:response_time, current_response_time, alert_thresholds.response_time)
alerts = [alert | alerts]
end
alerts
end
defp create_alert(alert_type, current_value, threshold) do
%{
type: alert_type,
current_value: current_value,
threshold: threshold,
severity: calculate_alert_severity(current_value, threshold),
timestamp: DateTime.utc_now(),
message: generate_alert_message(alert_type, current_value, threshold)
}
end
defp send_alerts(alerts) do
Enum.each(alerts, fn alert ->
# Log alert
Logger.warning("Production alert: #{alert.message}")
# Send to external monitoring systems
send_to_monitoring_system(alert)
# Send notifications based on severity
case alert.severity do
:critical ->
send_critical_notification(alert)
:high ->
send_high_priority_notification(alert)
:medium ->
send_medium_priority_notification(alert)
:low ->
# Log only, no external notification
:ok
end
end)
end
end
Dashboard Integration
defmodule Pipeline.DSPy.ProductionDashboard do
@moduledoc """
Provides real-time dashboard metrics for DSPy production monitoring.
"""
def get_dashboard_data do
%{
overview: get_overview_metrics(),
performance: get_performance_metrics(),
experiments: get_experiment_metrics(),
alerts: get_alert_metrics(),
deployment: get_deployment_metrics()
}
end
defp get_overview_metrics do
%{
total_executions: get_total_executions(),
dspy_executions: get_dspy_executions(),
traditional_executions: get_traditional_executions(),
success_rate: get_overall_success_rate(),
average_response_time: get_average_response_time()
}
end
defp get_performance_metrics do
%{
dspy_performance: %{
success_rate: get_dspy_success_rate(),
average_response_time: get_dspy_average_response_time(),
optimization_effectiveness: get_optimization_effectiveness()
},
traditional_performance: %{
success_rate: get_traditional_success_rate(),
average_response_time: get_traditional_average_response_time()
},
comparison: %{
performance_improvement: calculate_performance_improvement(),
cost_comparison: calculate_cost_comparison(),
quality_improvement: calculate_quality_improvement()
}
}
end
defp get_experiment_metrics do
active_experiments = Pipeline.DSPy.ExperimentManager.get_active_experiments()
Enum.map(active_experiments, fn experiment ->
%{
id: experiment.id,
name: experiment.config.name,
status: experiment.status,
participants: experiment.participants,
results: get_experiment_results_summary(experiment.id),
statistical_significance: calculate_statistical_significance(experiment.id)
}
end)
end
defp get_alert_metrics do
%{
active_alerts: get_active_alerts(),
recent_alerts: get_recent_alerts(),
alert_trends: get_alert_trends()
}
end
defp get_deployment_metrics do
%{
current_phase: Pipeline.DSPy.DeploymentPhases.get_current_phase(),
phase_metrics: get_current_phase_metrics(),
rollout_percentage: get_rollout_percentage(),
canary_health: get_canary_health_status()
}
end
end
4. Rollback Mechanisms
Automated Rollback System
defmodule Pipeline.DSPy.AutoRollback do
@moduledoc """
Automated rollback system that triggers rollbacks based on monitoring metrics.
"""
use GenServer
defstruct [
:rollback_config,
:monitoring_subscriptions,
:rollback_history,
:rollback_thresholds
]
def start_link(opts \\ []) do
GenServer.start_link(__MODULE__, opts, name: __MODULE__)
end
def trigger_manual_rollback(reason, approval_metadata) do
GenServer.call(__MODULE__, {:manual_rollback, reason, approval_metadata})
end
def get_rollback_status do
GenServer.call(__MODULE__, :get_rollback_status)
end
def init(opts) do
state = %__MODULE__{
rollback_config: load_rollback_config(opts),
monitoring_subscriptions: subscribe_to_monitoring_events(),
rollback_history: [],
rollback_thresholds: load_rollback_thresholds(opts)
}
{:ok, state}
end
def handle_info({:monitoring_alert, alert}, state) do
# Check if alert should trigger rollback
case should_trigger_rollback?(alert, state.rollback_thresholds) do
true ->
Logger.warning("Triggering automatic rollback due to alert: #{alert.type}")
case execute_rollback("Automatic rollback due to #{alert.type}", alert, state) do
{:ok, new_state} ->
{:noreply, new_state}
{:error, reason} ->
Logger.error("Failed to execute automatic rollback: #{reason}")
{:noreply, state}
end
false ->
{:noreply, state}
end
end
def handle_call({:manual_rollback, reason, approval_metadata}, _from, state) do
case execute_rollback(reason, approval_metadata, state) do
{:ok, new_state} ->
{:reply, :ok, new_state}
{:error, reason} ->
{:reply, {:error, reason}, state}
end
end
defp should_trigger_rollback?(alert, rollback_thresholds) do
case alert.type do
:error_rate ->
alert.current_value > rollback_thresholds.error_rate and
alert.severity in [:critical, :high]
:performance_degradation ->
alert.current_value > rollback_thresholds.performance_degradation and
alert.severity in [:critical, :high]
:system_failure ->
true # Always rollback on system failures
_ ->
false
end
end
defp execute_rollback(reason, metadata, state) do
rollback_start_time = DateTime.utc_now()
try do
# Step 1: Disable DSPy features
disable_dspy_features()
# Step 2: Rollback to previous deployment phase
case Pipeline.DSPy.DeploymentPhases.rollback_to_previous_phase(reason) do
{:ok, previous_phase} ->
# Step 3: Update configuration
update_rollback_configuration(previous_phase)
# Step 4: Clear caches
clear_optimization_caches()
# Step 5: Notify monitoring systems
notify_rollback_completion(reason, metadata)
# Record rollback
rollback_record = %{
reason: reason,
metadata: metadata,
started_at: rollback_start_time,
completed_at: DateTime.utc_now(),
previous_phase: previous_phase,
status: :completed
}
new_rollback_history = [rollback_record | state.rollback_history]
new_state = %{state | rollback_history: new_rollback_history}
Logger.info("Rollback completed successfully")
{:ok, new_state}
{:error, reason} ->
Logger.error("Failed to rollback deployment phase: #{reason}")
{:error, reason}
end
rescue
error ->
Logger.error("Rollback failed with error: #{inspect(error)}")
{:error, "Rollback execution failed: #{Exception.message(error)}"}
end
end
defp disable_dspy_features do
# Disable DSPy features across all components
Pipeline.DSPy.FeatureFlags.disable_all_dspy_features()
# Update configuration to disable DSPy
Pipeline.Enhanced.ConfigurationSystem.update_global_config(%{
"dspy_enabled" => false,
"fallback_to_traditional" => true
})
end
defp update_rollback_configuration(previous_phase) do
# Update configuration for rollback phase
phase_config = Pipeline.DSPy.PhaseConfig.get_phase_config(previous_phase)
Pipeline.Enhanced.ConfigurationSystem.apply_phase_config(phase_config)
end
defp clear_optimization_caches do
# Clear all optimization caches to ensure clean state
Pipeline.DSPy.OptimizationCache.clear_all()
Pipeline.DSPy.HierarchicalCache.clear_all()
end
defp notify_rollback_completion(reason, metadata) do
# Send rollback notification to monitoring systems
rollback_notification = %{
event: :rollback_completed,
reason: reason,
metadata: metadata,
timestamp: DateTime.utc_now()
}
Pipeline.Monitoring.send_event(rollback_notification)
end
end
Manual Rollback Procedures
defmodule Pipeline.DSPy.ManualRollback do
@moduledoc """
Manual rollback procedures for emergency situations.
"""
def emergency_rollback(reason, operator_id) do
Logger.warning("Emergency rollback initiated by #{operator_id}: #{reason}")
# Immediate actions
immediate_actions = [
{:disable_dspy_features, &disable_dspy_features_immediately/0},
{:activate_circuit_breaker, &activate_emergency_circuit_breaker/0},
{:notify_team, &send_emergency_notification/2}
]
# Execute immediate actions
Enum.each(immediate_actions, fn {action_name, action_fn} ->
case action_fn.() do
:ok ->
Logger.info("Emergency action #{action_name} completed")
{:error, error} ->
Logger.error("Emergency action #{action_name} failed: #{error}")
end
end)
# Start full rollback process
Pipeline.DSPy.AutoRollback.trigger_manual_rollback(reason, %{
operator_id: operator_id,
rollback_type: :emergency,
initiated_at: DateTime.utc_now()
})
end
def graceful_rollback(reason, operator_id, rollback_options \\ []) do
Logger.info("Graceful rollback initiated by #{operator_id}: #{reason}")
# Pre-rollback checks
case perform_pre_rollback_checks() do
:ok ->
# Execute graceful rollback
execute_graceful_rollback(reason, operator_id, rollback_options)
{:error, reason} ->
Logger.error("Pre-rollback checks failed: #{reason}")
{:error, reason}
end
end
defp execute_graceful_rollback(reason, operator_id, rollback_options) do
# Drain traffic gradually
if Keyword.get(rollback_options, :drain_traffic, true) do
drain_traffic_gradually()
end
# Wait for in-flight requests to complete
wait_for_inflight_requests()
# Execute rollback
Pipeline.DSPy.AutoRollback.trigger_manual_rollback(reason, %{
operator_id: operator_id,
rollback_type: :graceful,
rollback_options: rollback_options,
initiated_at: DateTime.utc_now()
})
end
defp disable_dspy_features_immediately do
# Immediately disable all DSPy features
:ets.insert(:dspy_feature_flags, {:dspy_enabled, false})
:ets.insert(:dspy_feature_flags, {:optimization_enabled, false})
:ets.insert(:dspy_feature_flags, {:fallback_to_traditional, true})
# Broadcast to all nodes
:rpc.multicall(Node.list(), :ets, :insert, [:dspy_feature_flags, {:dspy_enabled, false}])
:ok
end
defp activate_emergency_circuit_breaker do
# Activate circuit breaker to prevent DSPy execution
Pipeline.DSPy.CircuitBreaker.activate_emergency_mode()
:ok
end
defp send_emergency_notification(reason, operator_id) do
# Send immediate notification to on-call team
notification = %{
alert_type: :emergency_rollback,
reason: reason,
operator_id: operator_id,
timestamp: DateTime.utc_now()
}
Pipeline.Monitoring.send_critical_alert(notification)
:ok
end
end
5. Configuration Management
Production Configuration
# production_deployment.yaml
deployment:
phases:
canary:
user_percentage: 1
duration: 24h
success_criteria:
error_rate: < 0.01
performance_degradation: < 0.1
user_satisfaction: > 0.95
limited_production:
user_percentage: 10
duration: 72h
success_criteria:
error_rate: < 0.005
performance_degradation: < 0.05
user_satisfaction: > 0.98
full_production:
user_percentage: 100
duration: null
success_criteria:
error_rate: < 0.001
performance_degradation: < 0.02
user_satisfaction: > 0.99
experiments:
dspy_vs_traditional:
enabled: true
groups:
control:
weight: 50
configuration:
dspy_enabled: false
treatment:
weight: 50
configuration:
dspy_enabled: true
success_metrics:
- accuracy
- response_time
- cost_per_request
- user_satisfaction
duration: 30d
minimum_sample_size: 1000
monitoring:
alerts:
error_rate:
warning: 0.01
critical: 0.02
performance_degradation:
warning: 0.1
critical: 0.2
response_time:
warning: 5000ms
critical: 10000ms
dashboards:
- production_overview
- experiment_results
- performance_comparison
- alert_summary
rollback:
automatic_triggers:
- error_rate > 0.02
- performance_degradation > 0.3
- system_failure
manual_approval_required: false
emergency_contacts:
- team: engineering
oncall: true
- team: product
oncall: false
6. Testing and Validation
Production Readiness Tests
defmodule Pipeline.DSPy.ProductionReadinessTest do
use ExUnit.Case
describe "Deployment Phases" do
test "can advance through all deployment phases" do
# Start from development
{:ok, current_phase} = Pipeline.DSPy.DeploymentPhases.get_current_phase()
assert current_phase == :development
# Advance to staging
{:ok, next_phase} = Pipeline.DSPy.DeploymentPhases.advance_to_next_phase()
assert next_phase == :staging
# Continue through all phases
phases = [:canary, :limited_production, :full_production]
Enum.each(phases, fn expected_phase ->
{:ok, phase} = Pipeline.DSPy.DeploymentPhases.advance_to_next_phase()
assert phase == expected_phase
end)
end
test "rollback works correctly" do
# Advance to a later phase
Pipeline.DSPy.DeploymentPhases.advance_to_next_phase()
Pipeline.DSPy.DeploymentPhases.advance_to_next_phase()
# Rollback
{:ok, previous_phase} = Pipeline.DSPy.DeploymentPhases.rollback_to_previous_phase("Test rollback")
assert previous_phase == :staging
end
end
describe "A/B Testing" do
test "users are consistently assigned to groups" do
experiment_config = create_test_experiment_config()
{:ok, experiment_id} = Pipeline.DSPy.ExperimentManager.create_experiment(experiment_config)
user_id = "test_user_123"
# Get assignment multiple times
{:ok, assignment1} = Pipeline.DSPy.ExperimentManager.get_user_assignment(user_id, experiment_id)
{:ok, assignment2} = Pipeline.DSPy.ExperimentManager.get_user_assignment(user_id, experiment_id)
# Should be the same
assert assignment1.group == assignment2.group
end
end
describe "Monitoring and Alerts" do
test "alerts are triggered when thresholds are exceeded" do
# Simulate high error rate
high_error_metrics = %{
error_rate: 0.05,
execution_time: 1000,
success: false
}
Pipeline.DSPy.ProductionMonitor.record_execution_metrics(high_error_metrics)
# Check that alert was triggered
alerts = Pipeline.DSPy.ProductionMonitor.get_recent_alerts()
assert Enum.any?(alerts, fn alert -> alert.type == :error_rate end)
end
end
end
This comprehensive production deployment strategy provides a robust framework for safely deploying DSPy features to production while maintaining system reliability and user experience.