DSPex Integration Architecture: Next-Generation Agent Intelligence
Overview
This document outlines the comprehensive architecture for integrating DSPex (Declarative Self-improving Elixir) with MABEAM agent framework into pipeline_ex, creating a revolutionary multi-agent intelligence platform that surpasses traditional DSPy approaches.
Vision Statement
Transform pipeline_ex from a simple pipeline executor into a comprehensive multi-agent intelligence platform where:
- Agents are the execution units - Every step runs in fault-tolerant agents
- Signatures are intelligent contracts - Python-like syntax with compile-time optimization
- Variables are first-class citizens - Unified abstraction for all optimizable parameters
- Optimization is distributed - Multi-agent coordination for superior results
- Execution is resilient - OTP supervision for production reliability
Core Architecture Components
1. Multi-Agent Execution Engine
Agent-Based Step Execution
defmodule Pipeline.DSPex.AgentExecutor do
@moduledoc """
Agent-based execution engine replacing traditional step execution.
"""
def execute_step(step, context) do
# Determine agent type for step
agent_type = determine_agent_type(step)
# Get or create agent for execution
case get_or_create_agent(agent_type, step) do
{:ok, agent_id} ->
# Execute step as agent action
Mabeam.execute_action(agent_id, :execute_step, %{
step: step,
context: context
})
{:error, reason} ->
{:error, "Agent creation failed: #{reason}"}
end
end
defp determine_agent_type(step) do
case step["type"] do
"dspex_claude" -> :claude_agent
"dspex_gemini" -> :gemini_agent
"dspex_chain" -> :chain_agent
"dspex_optimizer" -> :optimizer_agent
_ -> :generic_agent
end
end
end
Specialized Agent Types
defmodule Pipeline.DSPex.Agents.ClaudeAgent do
@moduledoc """
Claude-specific agent with DSPex signature support.
"""
use Mabeam.Agent
use DSPex.SignatureAgent
@impl true
def init(agent, config) do
# Initialize Claude-specific state
state = %{
model: config["model"] || "claude-3-sonnet",
temperature: config["temperature"] || 0.7,
max_tokens: config["max_tokens"] || 4000,
signature_cache: %{},
optimization_state: %{}
}
{:ok, %{agent | state: state}}
end
@impl true
def handle_action(agent, :execute_step, %{step: step, context: context}) do
# Extract signature from step
signature = extract_signature(step)
# Resolve variables in signature
resolved_signature = resolve_signature_variables(signature, agent.state)
# Execute with Claude
case execute_with_claude(resolved_signature, context) do
{:ok, result} ->
# Update optimization state
updated_agent = update_optimization_state(agent, signature, result)
{:ok, updated_agent, result}
{:error, reason} ->
{:error, reason}
end
end
defp execute_with_claude(signature, context) do
# Use signature to build optimized prompt
prompt = build_prompt_from_signature(signature, context)
# Execute with Claude provider
Pipeline.Providers.ClaudeProvider.query(prompt, signature.options)
end
end
2. Python-Like Type System Integration
Enhanced Signature Module
defmodule Pipeline.DSPex.Signature do
@moduledoc """
Enhanced signature system with Python-like syntax and agent integration.
"""
use ElixirML.Signature
defmacro __using__(opts) do
quote do
import Pipeline.DSPex.Signature
import ElixirML.Signature.TypeMacros
Module.register_attribute(__MODULE__, :agent_config, accumulate: false)
Module.register_attribute(__MODULE__, :variables, accumulate: true)
@before_compile Pipeline.DSPex.Signature
end
end
defmacro signature(signature_ast) do
quote do
@signature_ast unquote(signature_ast)
end
end
defmacro agent_config(config) do
quote do
@agent_config unquote(config)
end
end
defmacro variable(name, type, opts \\ []) do
quote do
@variables {unquote(name), unquote(type), unquote(opts)}
end
end
defmacro __before_compile__(env) do
signature_ast = Module.get_attribute(env.module, :signature_ast)
agent_config = Module.get_attribute(env.module, :agent_config)
variables = Module.get_attribute(env.module, :variables)
quote do
def __signature__, do: unquote(signature_ast)
def __agent_config__, do: unquote(agent_config)
def __variables__, do: unquote(variables)
def validate_input(input), do: validate_signature_input(input, __signature__())
def validate_output(output), do: validate_signature_output(output, __signature__())
end
end
end
Example Usage
defmodule SecurityAnalysisSignature do
use Pipeline.DSPex.Signature
# Python-like type syntax
signature analyze_code: list[:string] ->
vulnerabilities: list[SecurityVulnerability],
risk_score: float[0.0, 1.0],
recommendations: list[:string]
# Agent configuration
agent_config %{
primary_agent: :security_specialist,
fallback_agent: :general_analyzer,
optimization_agent: :security_optimizer
}
# Variable declarations
variable :analysis_depth, :discrete,
default: :thorough,
options: [:quick, :standard, :thorough, :comprehensive]
variable :confidence_threshold, :continuous,
default: 0.8,
constraints: [range: {0.0, 1.0}]
variable :analysis_prompt, :string,
default: "Analyze this code for security vulnerabilities:",
constraints: [length: [min: 10, max: 500]]
end
3. Variable Abstraction Integration
Variable-Aware Agent System
defmodule Pipeline.DSPex.VariableAgent do
@moduledoc """
Agent that manages variable optimization and state.
"""
use Mabeam.Agent
use DSPy.Variable.Agent
@impl true
def init(agent, config) do
# Initialize variable registry for this agent
variable_registry = DSPy.Variable.Registry.create_agent_registry(agent.id)
# Register variables from signature
signature_variables = extract_signature_variables(config.signature)
Enum.each(signature_variables, fn {name, type, opts} ->
DSPy.Variable.Registry.register_variable(agent.id, name, type, opts)
end)
state = %{
signature: config.signature,
variable_registry: variable_registry,
optimization_history: [],
current_values: %{}
}
{:ok, %{agent | state: state}}
end
@impl true
def handle_action(agent, :update_variable, %{name: name, value: value}) do
# Update variable with validation
case DSPy.Variable.Registry.update_variable(agent.id, name, value) do
{:ok, updated_variable} ->
# Update agent state
new_values = Map.put(agent.state.current_values, name, value)
updated_agent = put_in(agent.state.current_values, new_values)
# Emit variable update event
Mabeam.emit_event(:variable_updated, %{
agent_id: agent.id,
variable_name: name,
old_value: Map.get(agent.state.current_values, name),
new_value: value
})
{:ok, updated_agent, %{variable: updated_variable}}
{:error, reason} ->
{:error, "Variable update failed: #{reason}"}
end
end
@impl true
def handle_action(agent, :optimize_variables, %{strategy: strategy, data: training_data}) do
# Get all variables for optimization
variables = DSPy.Variable.Registry.get_variables_for_agent(agent.id)
# Create optimization task
optimization_task = %{
agent_id: agent.id,
variables: variables,
strategy: strategy,
training_data: training_data
}
# Send to optimization coordinator
case send_to_optimization_coordinator(optimization_task) do
{:ok, optimization_id} ->
# Track optimization
new_history = [optimization_id | agent.state.optimization_history]
updated_agent = put_in(agent.state.optimization_history, new_history)
{:ok, updated_agent, %{optimization_id: optimization_id}}
{:error, reason} ->
{:error, "Optimization failed: #{reason}"}
end
end
end
4. Multi-Agent Optimization System
Optimization Coordinator Agent
defmodule Pipeline.DSPex.OptimizationCoordinator do
@moduledoc """
Central coordinator for multi-agent optimization.
"""
use Mabeam.Agent
@impl true
def init(agent, config) do
state = %{
active_optimizations: %{},
optimization_strategies: %{
prompt_optimization: Pipeline.DSPex.Optimizers.PromptOptimizer,
parameter_optimization: Pipeline.DSPex.Optimizers.ParameterOptimizer,
distributed_optimization: Pipeline.DSPex.Optimizers.DistributedOptimizer
},
coordinator_agents: %{}
}
{:ok, %{agent | state: state}}
end
@impl true
def handle_action(agent, :start_optimization, optimization_task) do
optimization_id = generate_optimization_id()
# Determine optimization strategy
strategy = determine_optimization_strategy(optimization_task)
# Create specialized optimization agents
optimization_agents = create_optimization_agents(strategy, optimization_task)
# Store optimization state
optimization_state = %{
id: optimization_id,
task: optimization_task,
strategy: strategy,
agents: optimization_agents,
status: :running,
started_at: DateTime.utc_now(),
results: %{}
}
new_optimizations = Map.put(agent.state.active_optimizations, optimization_id, optimization_state)
updated_agent = put_in(agent.state.active_optimizations, new_optimizations)
# Start optimization process
start_optimization_process(optimization_id, optimization_agents)
{:ok, updated_agent, %{optimization_id: optimization_id}}
end
defp create_optimization_agents(strategy, task) do
case strategy do
:prompt_optimization ->
{:ok, prompt_agent, _} = start_prompt_optimization_agent(task)
[prompt_agent]
:parameter_optimization ->
{:ok, param_agent, _} = start_parameter_optimization_agent(task)
[param_agent]
:distributed_optimization ->
{:ok, prompt_agent, _} = start_prompt_optimization_agent(task)
{:ok, param_agent, _} = start_parameter_optimization_agent(task)
{:ok, eval_agent, _} = start_evaluation_agent(task)
[prompt_agent, param_agent, eval_agent]
end
end
end
Specialized Optimization Agents
defmodule Pipeline.DSPex.Optimizers.PromptOptimizer do
@moduledoc """
Specialized agent for prompt optimization.
"""
use Mabeam.Agent
use DSPy.Optimizer.VariableOptimizer
@impl true
def handle_action(agent, :optimize_prompts, %{variables: variables, training_data: data}) do
# Filter to string variables (prompts)
prompt_variables = Enum.filter(variables, &(&1.type == :string))
# Generate prompt variants using LLM
variant_tasks = Enum.map(prompt_variables, fn var ->
Task.async(fn -> generate_prompt_variants(var, data) end)
end)
# Collect results
variants = Task.await_many(variant_tasks, 30_000)
# Evaluate variants
evaluation_tasks = Enum.map(variants, fn {var_id, variant_list} ->
Task.async(fn -> evaluate_prompt_variants(var_id, variant_list, data) end)
end)
# Get best variants
best_variants = Task.await_many(evaluation_tasks, 60_000)
# Create optimization results
optimization_results = Enum.map(best_variants, fn {var_id, best_variant, score} ->
%{
variable_id: var_id,
optimized_value: best_variant,
improvement_score: score,
optimization_method: :prompt_variants
}
end)
{:ok, agent, %{results: optimization_results}}
end
defp generate_prompt_variants(variable, training_data) do
# Use Claude to generate prompt variants
variant_prompt = """
Generate 10 improved variations of this prompt:
"#{variable.value}"
Requirements:
- Maintain the same intent and functionality
- Improve clarity and effectiveness
- Consider these constraints: #{inspect(variable.constraints)}
Training context:
#{format_training_context(training_data)}
Return as a JSON array of strings.
"""
case Pipeline.Providers.ClaudeProvider.query(variant_prompt, %{}) do
{:ok, response} ->
variants = extract_variants_from_response(response)
{variable.id, variants}
{:error, reason} ->
Logger.error("Failed to generate prompt variants: #{reason}")
{variable.id, [variable.value]}
end
end
end
5. Agent-Aware Configuration System
DSPex Configuration Schema
defmodule Pipeline.DSPex.ConfigSchema do
@moduledoc """
Configuration schema for DSPex-enabled pipelines.
"""
def get_dspex_schema_extension do
%{
"properties" => %{
"workflow" => %{
"properties" => %{
"agent_config" => %{
"type" => "object",
"properties" => %{
"default_agent_type" => %{"type" => "string"},
"agent_pools" => %{
"type" => "object",
"patternProperties" => %{
".*" => %{
"type" => "object",
"properties" => %{
"size" => %{"type" => "integer", "minimum" => 1},
"agent_type" => %{"type" => "string"},
"initialization_config" => %{"type" => "object"}
}
}
}
},
"optimization_config" => %{
"type" => "object",
"properties" => %{
"enabled" => %{"type" => "boolean"},
"strategy" => %{
"type" => "string",
"enum" => ["prompt_optimization", "parameter_optimization", "distributed_optimization"]
},
"coordination_agent" => %{"type" => "string"}
}
}
}
},
"steps" => %{
"items" => %{
"properties" => %{
"signature" => %{
"type" => "object",
"properties" => %{
"input_fields" => %{
"type" => "array",
"items" => %{
"type" => "object",
"properties" => %{
"name" => %{"type" => "string"},
"type" => %{"type" => "string"},
"constraints" => %{"type" => "object"}
}
}
},
"output_fields" => %{
"type" => "array",
"items" => %{
"type" => "object",
"properties" => %{
"name" => %{"type" => "string"},
"type" => %{"type" => "string"},
"constraints" => %{"type" => "object"}
}
}
}
}
},
"variables" => %{
"type" => "array",
"items" => %{
"type" => "object",
"properties" => %{
"name" => %{"type" => "string"},
"type" => %{"type" => "string"},
"default" => %{"type" => "any"},
"constraints" => %{"type" => "object"}
}
}
},
"agent_config" => %{
"type" => "object",
"properties" => %{
"primary_agent" => %{"type" => "string"},
"fallback_agent" => %{"type" => "string"},
"optimization_agent" => %{"type" => "string"}
}
}
}
}
}
}
}
}
}
end
end
Enhanced Configuration Loading
defmodule Pipeline.DSPex.ConfigLoader do
@moduledoc """
Enhanced configuration loader with DSPex support.
"""
def load_dspex_config(config_path) do
with {:ok, raw_config} <- File.read(config_path),
{:ok, parsed_config} <- parse_config(raw_config),
{:ok, validated_config} <- validate_dspex_config(parsed_config),
{:ok, enhanced_config} <- enhance_with_agents(validated_config) do
{:ok, enhanced_config}
else
{:error, reason} -> {:error, reason}
end
end
defp parse_config(raw_config) do
# Support both YAML and JSON
case Path.extname(config_path) do
".yaml" -> YamlElixir.read_from_string(raw_config)
".json" -> Jason.decode(raw_config)
_ -> {:error, "Unsupported config format"}
end
end
defp validate_dspex_config(config) do
# Validate with DSPex schema extensions
schema = Pipeline.DSPex.ConfigSchema.get_dspex_schema_extension()
Pipeline.Enhanced.SchemaValidator.validate_with_type_preservation(config, schema)
end
defp enhance_with_agents(config) do
# Add agent-specific enhancements
enhanced_workflow = config["workflow"]
|> enhance_steps_with_agents()
|> setup_agent_pools()
|> configure_optimization_agents()
{:ok, put_in(config, ["workflow"], enhanced_workflow)}
end
defp enhance_steps_with_agents(workflow) do
enhanced_steps = Enum.map(workflow["steps"], fn step ->
step
|> determine_agent_requirements()
|> setup_step_agents()
|> configure_step_variables()
end)
put_in(workflow, ["steps"], enhanced_steps)
end
end
6. Production Integration
Agent Supervisor Integration
defmodule Pipeline.DSPex.Supervisor do
@moduledoc """
Supervisor for DSPex agent-based pipeline execution.
"""
use Supervisor
def start_link(opts) do
Supervisor.start_link(__MODULE__, opts, name: __MODULE__)
end
def init(opts) do
children = [
# MABEAM foundation
{Mabeam.Foundation.Supervisor, opts},
# DSPex-specific agents
{Pipeline.DSPex.OptimizationCoordinator, []},
{Pipeline.DSPex.VariableRegistry, []},
{Pipeline.DSPex.AgentPool, []},
# Enhanced infrastructure
{Pipeline.Enhanced.AgentStepRegistry, []},
{Pipeline.Enhanced.AgentSchemaValidator, []},
{Pipeline.DSPex.ConfigManager, []}
]
Supervisor.init(children, strategy: :one_for_one)
end
end
Example DSPex Pipeline Configuration
# dspex_security_analysis.yaml
workflow:
name: "dspex_security_analysis"
description: "Multi-agent security analysis with optimization"
agent_config:
default_agent_type: "security_specialist"
agent_pools:
security_specialists:
size: 3
agent_type: "security_specialist"
initialization_config:
specializations: ["web_security", "crypto", "auth"]
optimizers:
size: 2
agent_type: "optimization_coordinator"
initialization_config:
strategies: ["prompt_optimization", "parameter_optimization"]
optimization_config:
enabled: true
strategy: "distributed_optimization"
coordination_agent: "optimization_coordinator"
steps:
- name: "analyze_security_vulnerabilities"
type: "dspex_claude"
signature:
input_fields:
- name: "source_code"
type: "list[string]"
constraints:
length: {min: 1, max: 10000}
- name: "analysis_context"
type: "dict[string, any]"
constraints:
required_keys: ["language", "framework"]
output_fields:
- name: "vulnerabilities"
type: "list[SecurityVulnerability]"
constraints:
length: {min: 0, max: 100}
- name: "risk_assessment"
type: "RiskAssessment"
constraints:
required_fields: ["overall_score", "category_scores"]
- name: "recommendations"
type: "list[string]"
constraints:
length: {min: 0, max: 50}
variables:
- name: "analysis_depth"
type: "discrete"
default: "thorough"
constraints:
options: ["quick", "standard", "thorough", "comprehensive"]
- name: "confidence_threshold"
type: "continuous"
default: 0.8
constraints:
range: {min: 0.0, max: 1.0}
- name: "analysis_prompt"
type: "string"
default: "Analyze the following code for security vulnerabilities:"
constraints:
length: {min: 10, max: 500}
agent_config:
primary_agent: "security_specialist"
fallback_agent: "general_analyzer"
optimization_agent: "security_optimizer"
- name: "generate_security_report"
type: "dspex_chain"
signature:
input_fields:
- name: "vulnerabilities"
type: "list[SecurityVulnerability]"
- name: "risk_assessment"
type: "RiskAssessment"
- name: "recommendations"
type: "list[string]"
output_fields:
- name: "security_report"
type: "SecurityReport"
- name: "executive_summary"
type: "string"
chain_config:
steps:
- agent: "report_generator"
action: "structure_findings"
- agent: "executive_summarizer"
action: "create_executive_summary"
- agent: "formatter"
action: "format_final_report"
Benefits of DSPex Integration
1. Revolutionary Architecture
- Native Elixir/BEAM - No Python bridge complexity
- Multi-agent intelligence - Distributed optimization and execution
- Fault-tolerant design - OTP supervision for production reliability
- Scalable concurrency - Thousands of agents per node
2. Superior Developer Experience
- Python-like syntax - Familiar and intuitive type system
- Comprehensive tooling - Full IDE support with type checking
- Agent abstractions - Simple yet powerful execution model
- Variable-first design - Unified optimization interface
3. Production-Ready Features
- Built-in monitoring - Agent health and performance tracking
- Hot code reloading - Zero-downtime updates
- Horizontal scaling - Multi-node distribution
- Event-driven coordination - Reactive agent interactions
4. Advanced Optimization
- Multi-agent optimization - Distributed intelligence
- Variable abstraction - Unified parameter optimization
- Adaptive learning - Continuous improvement
- Performance monitoring - Real-time optimization feedback
Migration Strategy
Phase 1: Foundation (Weeks 1-2)
- Integrate MABEAM - Add agent framework
- Enhance schemas - Python-like type syntax
- Basic agent steps - Convert existing steps
- Agent registry - Extend step registry
Phase 2: Variables (Weeks 3-4)
- Variable system - Implement abstraction
- Agent variables - Connect to agent state
- Basic optimization - Single-agent optimization
- Configuration enhancement - Support variables
Phase 3: Multi-Agent (Weeks 5-6)
- Optimization coordination - Multi-agent system
- Distributed optimization - Scale across nodes
- Advanced signatures - Complex type support
- Performance tuning - Optimize agent performance
Phase 4: Production (Weeks 7-8)
- Monitoring integration - Agent-aware monitoring
- Deployment tools - Agent deployment utilities
- Advanced features - Hot reloading, scaling
- Documentation - Complete user guides
This DSPex integration transforms pipeline_ex into a next-generation multi-agent intelligence platform, providing unprecedented capabilities for AI system development and optimization.