Pipeline Organization and Categorization System
Overview
This document defines the organizational structure for the AI engineering pipeline library, establishing a systematic approach to pipeline discovery, reuse, and composition.
Directory Structure
pipeline_ex/
├── pipelines/ # Main pipeline library
│ ├── registry.yaml # Global pipeline registry
│ ├── data/ # Data processing pipelines
│ │ ├── cleaning/
│ │ ├── enrichment/
│ │ ├── transformation/
│ │ └── quality/
│ ├── model/ # Model development pipelines
│ │ ├── prompt_engineering/
│ │ ├── evaluation/
│ │ ├── comparison/
│ │ └── fine_tuning/
│ ├── code/ # Code generation pipelines
│ │ ├── api_generation/
│ │ ├── test_generation/
│ │ ├── documentation/
│ │ └── refactoring/
│ ├── analysis/ # Analysis pipelines
│ │ ├── codebase/
│ │ ├── security/
│ │ ├── performance/
│ │ └── dependencies/
│ ├── content/ # Content generation pipelines
│ │ ├── blog/
│ │ ├── tutorial/
│ │ ├── api_docs/
│ │ └── changelog/
│ ├── devops/ # DevOps pipelines
│ │ ├── ci_cd/
│ │ ├── deployment/
│ │ ├── monitoring/
│ │ └── infrastructure/
│ ├── components/ # Reusable components
│ │ ├── steps/ # Reusable step definitions
│ │ ├── prompts/ # Prompt templates
│ │ ├── functions/ # Gemini function definitions
│ │ ├── validators/ # Validation components
│ │ └── transformers/ # Data transformation components
│ └── templates/ # Pipeline templates
│ ├── basic/ # Simple pipeline patterns
│ ├── advanced/ # Complex pipeline patterns
│ └── enterprise/ # Production-grade patterns
├── examples/ # Example usage and demos
│ ├── tutorials/ # Step-by-step tutorials
│ └── case_studies/ # Real-world implementations
└── tests/ # Pipeline-specific tests
├── pipeline_tests/ # Integration tests for pipelines
└── component_tests/ # Unit tests for components
Pipeline Registry Schema
The registry.yaml
serves as the central catalog of all available pipelines:
version: "1.0"
last_updated: "2025-06-30"
pipelines:
- id: "data-cleaning-standard"
name: "Standard Data Cleaning Pipeline"
category: "data/cleaning"
description: "Multi-stage data cleaning with validation"
version: "1.0.0"
tags: ["data", "cleaning", "validation"]
dependencies:
- "components/steps/validation"
- "components/transformers/data"
complexity: "medium"
estimated_tokens: 5000
providers: ["claude", "gemini"]
- id: "api-rest-generator"
name: "REST API Generator"
category: "code/api_generation"
description: "Generate complete REST API with tests"
version: "2.1.0"
tags: ["api", "code-generation", "rest"]
dependencies:
- "components/steps/code"
- "components/prompts/api"
complexity: "high"
estimated_tokens: 15000
providers: ["claude"]
Categorization Taxonomy
1. Primary Categories
- Data: Pipelines focused on data manipulation and processing
- Model: AI/ML model development and optimization
- Code: Software development and code generation
- Analysis: System and code analysis workflows
- Content: Documentation and content creation
- DevOps: Infrastructure and deployment automation
2. Complexity Levels
- Basic: Single-step or simple multi-step pipelines
- Medium: Multi-step with conditional logic
- High: Complex workflows with parallel execution
- Enterprise: Production-grade with full error handling
3. Provider Requirements
- Claude-only: Requires Claude-specific features
- Gemini-only: Requires Gemini function calling
- Multi-provider: Can use either provider
- Hybrid: Requires both providers
Component Classification
Step Components
# components/steps/validation/input_validator.yaml
component:
type: "step"
id: "input-validator"
name: "Input Validation Step"
description: "Validates input data against schema"
parameters:
schema:
type: "object"
description: "JSON Schema for validation"
strict:
type: "boolean"
default: true
outputs:
valid:
type: "boolean"
errors:
type: "array"
items:
type: "string"
Prompt Templates
# components/prompts/analysis/code_review.yaml
component:
type: "prompt"
id: "code-review-prompt"
name: "Code Review Prompt Template"
variables:
- code_content
- review_focus
- severity_level
template: |
Review the following code with focus on {review_focus}:
```
{code_content}
```
Provide feedback at {severity_level} level.
Naming Conventions
Pipeline Files
- Format:
{purpose}_{variant}_pipeline.yaml
- Examples:
data_cleaning_standard_pipeline.yaml
api_generation_rest_pipeline.yaml
security_audit_comprehensive_pipeline.yaml
Component Files
- Format:
{function}_{type}.yaml
- Examples:
input_validator.yaml
json_transformer.yaml
code_review_prompt.yaml
Version Tags
- Semantic versioning:
MAJOR.MINOR.PATCH
- Beta versions:
X.Y.Z-beta.N
- Release candidates:
X.Y.Z-rc.N
Discovery Mechanisms
1. CLI Commands
# List all pipelines
mix pipeline.list
# Search by category
mix pipeline.list --category data/cleaning
# Search by tags
mix pipeline.list --tags "api,rest"
# Show pipeline details
mix pipeline.info api-rest-generator
2. Web Interface (Future)
- Visual pipeline browser
- Dependency graph visualization
- Performance metrics dashboard
- Usage analytics
3. API Access
# Pipeline discovery API
Pipeline.Registry.list_by_category("data/cleaning")
Pipeline.Registry.search(tags: ["api", "rest"])
Pipeline.Registry.get_details("api-rest-generator")
Metadata Standards
Each pipeline must include:
- Unique identifier
- Descriptive name
- Clear category placement
- Version information
- Dependency declarations
- Performance estimates
- Provider requirements
- Comprehensive tags
Migration Path
For existing pipelines:
- Analyze current pipeline files
- Categorize according to new taxonomy
- Add required metadata
- Update file locations
- Register in central registry
- Update references in code
Governance
Adding New Pipelines
- Define clear purpose and category
- Follow naming conventions
- Include all required metadata
- Add comprehensive tests
- Document usage examples
- Submit for review
Deprecation Process
- Mark as deprecated in registry
- Add deprecation notice to file
- Provide migration guide
- Maintain for 2 major versions
- Archive after removal
Benefits
- Discoverability: Easy to find relevant pipelines
- Reusability: Clear component boundaries
- Maintainability: Organized structure
- Scalability: Supports growth
- Consistency: Enforced standards
- Quality: Review process