Developer Experience Guide for Recursive Pipelines
Table of Contents
- Overview
- Enhanced Error Messages
- Execution Tracing
- Visual Debugging
- Performance Analysis
- Interactive Debugging
- Telemetry and Monitoring
- Development Tools
- Testing and Validation
- Best Practices
- Troubleshooting Guide
- API Reference
Overview
The recursive pipeline system includes comprehensive developer tools designed to make debugging, monitoring, and optimizing nested pipeline executions intuitive and efficient. These tools provide visibility into complex execution flows and help identify issues quickly.
Developer Experience Architecture
Enhanced Error Messages
Contextual Error Reporting
Errors include complete execution context and actionable information:
# Example error with full context
Pipeline execution failed in nested pipeline:
Main Pipeline: data_analysis_workflow
ββ Step: process_data (pipeline)
ββ Nested Pipeline: data_processor
ββ Step: validate_schema (claude)
ββ Error: Invalid JSON in response
Execution Stack:
1. data_analysis_workflow.process_data (depth: 0)
Started: 12:34:56.123
Duration: 2.5s
2. data_processor.validate_schema (depth: 1)
Started: 12:34:57.234
Duration: 1.2s
Error: JSON parsing failed at position 234
Context at failure:
- Total steps executed: 12
- Nesting depth: 1
- Elapsed time: 4.2s
- Memory usage: 234MB
- Last successful step: data_processor.load_data
Available variables:
- steps.load_data.result: <Map with 3 keys>
- global_vars.api_key: "***ed45" (redacted)
- workflow.config.mode: "production"
Debug Information:
- Trace ID: a1b2c3d4-e5f6-7890-abcd-ef1234567890
- Parent span: 9f8e7d6c-5b4a-3210-fedc-ba0987654321
- Log correlation ID: req-123456
Recovery suggestions:
1. Check the JSON structure in validate_schema step
2. Review the prompt for proper JSON formatting instructions
3. Add error handling for malformed responses
4. Use --resume flag to continue from last checkpoint
Error Formatting Options
Configure error output format:
# config/dev.exs - Detailed errors for development
config :pipeline, :error_formatting,
style: :detailed,
include_variables: true,
include_suggestions: true,
color_output: true,
max_context_depth: 10
# config/prod.exs - Concise errors for production
config :pipeline, :error_formatting,
style: :concise,
include_variables: false,
include_suggestions: false,
color_output: false,
max_context_depth: 3
Custom Error Handlers
Implement custom error formatting:
defmodule MyApp.ErrorHandler do
@behaviour Pipeline.Error.Handler
def format_error(error, context, options) do
case error do
%Pipeline.Error.NestedPipeline{} = nested_error ->
format_nested_error(nested_error, context, options)
%Pipeline.Error.Timeout{} = timeout_error ->
format_timeout_error(timeout_error, context, options)
_ ->
Pipeline.Error.NestedPipeline.format_error(error, context, options)
end
end
defp format_nested_error(error, context, _options) do
"""
π¨ Pipeline Error in #{error.pipeline_name}
Location: #{error.step_name} (depth: #{context.depth})
Message: #{error.message}
Quick Actions:
- Run `pipeline debug #{context.trace_id}` for details
- Check logs with correlation ID: #{context.correlation_id}
"""
end
end
Execution Tracing
Span-Based Tracing
Every pipeline execution creates a hierarchical span structure:
# Span structure
%Span{
id: "a1b2c3d4",
parent_id: "9f8e7d6c",
pipeline_id: "data_processor",
step_name: "validate",
start_time: ~U[2025-01-03 12:34:56.123Z],
end_time: ~U[2025-01-03 12:34:57.456Z],
duration_ms: 1333,
status: :success,
metadata: %{
depth: 2,
memory_before_mb: 123.4,
memory_after_mb: 145.6,
step_type: "claude",
tokens_used: 1234
},
events: [
{~U[2025-01-03 12:34:56.500Z], "Starting validation"},
{~U[2025-01-03 12:34:57.000Z], "API call completed"},
{~U[2025-01-03 12:34:57.400Z], "Result processed"}
]
}
Enabling Tracing
# Enable tracing for specific pipelines
- name: "complex_workflow"
type: "pipeline"
pipeline_file: "./workflow.yaml"
config:
enable_tracing: true
trace_config:
capture_inputs: true # Include input data in spans
capture_outputs: true # Include output data
capture_llm_calls: true # Trace LLM interactions
sampling_rate: 1.0 # Trace all executions
Trace Visualization
# Generate trace visualization
Pipeline.Tracing.NestedExecution.visualize_trace(trace_id)
# Output:
Execution Trace: a1b2c3d4-e5f6-7890-abcd-ef1234567890
Total Duration: 4,523ms
ββ main_pipeline (4,523ms) β
β ββ load_data (234ms) β
β β ββ [file_read] data.json (45ms)
β ββ data_processor (3,456ms) β
β β ββ validate_schema (1,234ms) β
β β β ββ [claude_api] Validate structure (1,100ms)
β β β ββ [json_parse] Process response (34ms)
β β ββ transform_data (1,567ms) β
β β β ββ [compute] Apply transformations (1,234ms)
β β β ββ [validate] Check results (333ms)
β β ββ save_results (655ms) β
β β ββ [file_write] output.json (623ms)
β ββ generate_report (833ms) β
β ββ [claude_api] Create summary (812ms)
Performance Indicators:
π’ Excellent (<100ms) π‘ Good (<500ms) π Fair (<2s) π΄ Poor (>2s)
Distributed Tracing Integration
# Integration with OpenTelemetry
config :pipeline, :tracing,
backend: :opentelemetry,
service_name: "pipeline_ex",
exporter: :otlp,
endpoint: "http://localhost:4317"
# Custom trace attributes
Pipeline.Tracing.add_attributes(%{
"user.id" => user_id,
"pipeline.version" => "2.0",
"deployment.environment" => "production"
})
Visual Debugging
Interactive Execution Tree
# Start interactive debug session
Pipeline.Debug.NestedExecution.start_debug_session(trace_id)
# Interactive commands available:
Pipeline Debug Console v1.0
Trace ID: a1b2c3d4-e5f6-7890-abcd-ef1234567890
Commands:
tree - Show execution tree
inspect <id> - Inspect specific span
search <term> - Search spans
timeline - Show execution timeline
perf - Performance analysis
vars <id> - Show variables at span
errors - List all errors
export - Export trace data
help - Show this help
exit - Exit debug console
debug> tree
π Execution Tree
ββ main_workflow (289.5ms) β [a1b2c3d4]
β ββ prepare_data (45.2ms) β [b2c3d4e5]
β β ββ π Input: {source: "api", format: "json"}
β β ββ β
Output: {records: 1000, valid: true}
β ββ analysis_pipeline (198.3ms) β [c3d4e5f6]
β β ββ security_scan (89.1ms) β [d4e5f6g7]
β β β ββ π Scanning 1000 records
β β β ββ β
No vulnerabilities found
β β ββ performance_check (72.4ms) β οΈ [e5f6g7h8]
β β ββ β‘ Analyzing query patterns
β β ββ β οΈ Slow query detected: line 45
β ββ generate_report (46.0ms) β [f6g7h8i9]
β ββ π Report: report_20250103_123456.pdf
Legend: β Success β Failed β οΈ Warning π Running
Timeline Visualization
debug> timeline
π
Execution Timeline
ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
Time β Duration β Pipeline/Step β Status
ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
0ms β 45.2ms β βββββ prepare_data β β
45.2ms β 89.1ms β ββββββββββ security_scan β β
134.3ms β 72.4ms β ββββββββ performance_checkβ β οΈ
206.7ms β 36.8ms β ββββ code_quality β β
243.5ms β 46.0ms β βββββ generate_report β β
ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
Total: 289.5ms
Parallelism opportunities:
- security_scan and performance_check could run in parallel
- Potential time savings: ~72ms (25%)
Variable Inspector
debug> vars c3d4e5f6
π¦ Variables at span c3d4e5f6 (analysis_pipeline)
Context Variables:
ββ steps
β ββ prepare_data
β β ββ result: {records: 1000, valid: true, source: "api"}
β ββ security_scan
β ββ result: {vulnerabilities: [], risk_level: "low"}
ββ global_vars
β ββ api_endpoint: "https://api.example.com"
β ββ auth_token: "***4567" (redacted)
β ββ scan_config: {depth: "full", exclude: ["tests"]}
ββ workflow
ββ name: "security_audit"
ββ config: {environment: "staging", parallel: true}
Local Variables:
ββ current_step: "performance_check"
ββ accumulated_issues: []
ββ scan_metadata: {start_time: "12:34:56", records_processed: 567}
Performance Analysis
Automated Performance Analysis
# Analyze performance for execution
Pipeline.Metrics.NestedPerformance.analyze_performance(execution_id)
# Returns detailed analysis:
%{
overall_metrics: %{
total_duration_ms: 4523.7,
total_steps: 24,
success_rate: 0.958, # 23/24 succeeded
max_depth: 3,
parallelism_score: 0.45 # 45% of time was parallel
},
depth_metrics: %{
0 => %{
steps: 5,
avg_duration_ms: 567.3,
max_duration_ms: 1234.5,
success_rate: 1.0
},
1 => %{
steps: 12,
avg_duration_ms: 234.6,
max_duration_ms: 567.8,
success_rate: 0.917
},
2 => %{
steps: 7,
avg_duration_ms: 123.4,
max_duration_ms: 234.5,
success_rate: 1.0
}
},
bottlenecks: [
%{
pipeline: "data_processor",
step: "large_file_transform",
duration_ms: 1234.5,
percentage_of_total: 27.3,
suggestions: [
"Consider streaming for large files",
"Implement parallel processing",
"Add caching for repeated transformations"
]
},
%{
pipeline: "api_caller",
step: "batch_request",
duration_ms: 890.1,
percentage_of_total: 19.7,
suggestions: [
"Batch API calls more efficiently",
"Implement request pooling",
"Consider async processing"
]
}
],
performance_grade: :fair, # :excellent | :good | :fair | :poor
recommendations: [
"Enable parallel execution for independent steps",
"Implement caching for expensive operations",
"Consider breaking large_file_transform into smaller chunks",
"Review API rate limits and optimize batch sizes"
],
resource_usage: %{
peak_memory_mb: 456.7,
avg_memory_mb: 234.5,
cpu_usage_percent: 67.8,
io_wait_percent: 23.4
}
}
Performance Grading System
# Performance grades based on execution characteristics
defmodule Pipeline.Metrics.PerformanceGrader do
def calculate_grade(metrics) do
scores = %{
duration: score_duration(metrics.avg_duration_ms),
memory: score_memory(metrics.peak_memory_mb),
success: score_success_rate(metrics.success_rate),
efficiency: score_efficiency(metrics.parallelism_score)
}
weighted_average =
scores.duration * 0.4 +
scores.memory * 0.2 +
scores.success * 0.3 +
scores.efficiency * 0.1
cond do
weighted_average >= 0.9 -> :excellent
weighted_average >= 0.7 -> :good
weighted_average >= 0.5 -> :fair
true -> :poor
end
end
end
Performance Monitoring Dashboard
# Enable performance dashboard
config:
performance_monitoring:
enabled: true
dashboard_port: 4000
metrics_retention_days: 30
# Access dashboard at http://localhost:4000/pipeline/metrics
Dashboard features:
- Real-time execution monitoring
- Historical performance trends
- Resource usage graphs
- Bottleneck identification
- SLA tracking
Interactive Debugging
Debug REPL
# Start interactive debug REPL
iex> Pipeline.Debug.start_repl(execution_id)
Pipeline Debug REPL
Connected to execution: a1b2c3d4-e5f6-7890
Type 'help' for commands
debug> current_state
%{
pipeline: "data_processor",
step: "transform_data",
status: :running,
elapsed: 234.5,
memory_mb: 123.4
}
debug> breakpoint "validate_results"
Breakpoint set at validate_results
Execution will pause when reached
debug> continue
Continuing execution...
βΈοΈ Paused at breakpoint: validate_results
debug> inspect_vars
%{
"transformed_data" => %{size: 1000, format: "json"},
"validation_rules" => ["required_fields", "data_types"],
"previous_errors" => []
}
debug> step_over
Executing validate_results...
β Step completed successfully
debug> watch "memory_mb > 500"
Watch expression added
Will notify when memory exceeds 500MB
Debugging Configuration
# Enable debugging features
- name: "debuggable_pipeline"
type: "pipeline"
pipeline_file: "./complex_workflow.yaml"
config:
debug:
enabled: true
breakpoints: ["critical_step", "after_transform"]
watch_expressions:
- "steps.transform.result.error != null"
- "context.memory_mb > 800"
pause_on_error: true
interactive_mode: true
Remote Debugging
# Enable remote debugging
config :pipeline, :debug,
remote_enabled: true,
debug_port: 9999,
allowed_ips: ["127.0.0.1", "10.0.0.0/8"],
auth_token: System.get_env("DEBUG_TOKEN")
# Connect from remote machine
$ pipeline debug connect --host prod-server --port 9999 --token $DEBUG_TOKEN
Connected to remote pipeline debugger
Active executions: 3
Select execution to debug:
1. data_processor_20250103_123456 (running)
2. report_generator_20250103_123500 (paused)
3. api_sync_20250103_123600 (completed)
Telemetry and Monitoring
Built-in Telemetry Events
# Comprehensive telemetry events for monitoring
:telemetry.execute(
[:pipeline, :nested, :start],
%{system_time: System.system_time()},
%{
pipeline_id: pipeline_id,
parent_id: parent_id,
depth: depth,
step_count: length(pipeline.steps)
}
)
# Available events:
[:pipeline, :nested, :start] # Pipeline execution started
[:pipeline, :nested, :stop] # Pipeline execution completed
[:pipeline, :nested, :error] # Pipeline execution failed
[:pipeline, :span, :start] # Span started
[:pipeline, :span, :stop] # Span completed
[:pipeline, :span, :event] # Span event logged
[:pipeline, :debug, :breakpoint] # Breakpoint hit
[:pipeline, :debug, :watch] # Watch expression triggered
[:pipeline, :performance, :warning] # Performance threshold exceeded
[:pipeline, :resource, :pressure] # Resource pressure detected
Custom Telemetry Handlers
defmodule MyApp.PipelineTelemetry do
def attach_handlers do
:telemetry.attach_many(
"my-app-pipeline-handler",
[
[:pipeline, :nested, :start],
[:pipeline, :nested, :stop],
[:pipeline, :performance, :warning]
],
&handle_event/4,
nil
)
end
def handle_event([:pipeline, :nested, :stop], measurements, metadata, _config) do
duration_ms = measurements.duration / 1_000_000
# Log to metrics system
StatsD.timing("pipeline.execution.duration", duration_ms,
tags: [
"pipeline:#{metadata.pipeline_id}",
"depth:#{metadata.depth}"
]
)
# Alert on slow executions
if duration_ms > 5000 do
AlertManager.send_alert(%{
type: :slow_pipeline,
pipeline: metadata.pipeline_id,
duration_ms: duration_ms
})
end
end
end
Metrics Export
# Configure metrics export
config :pipeline, :metrics,
exporters: [
{Pipeline.Metrics.Prometheus, port: 9090},
{Pipeline.Metrics.StatsD, host: "localhost", port: 8125},
{Pipeline.Metrics.CloudWatch, region: "us-east-1"}
],
# Metrics to collect
collect: [
:execution_duration,
:step_duration,
:memory_usage,
:error_rate,
:depth_distribution,
:resource_usage
]
Development Tools
Pipeline Development CLI
# Development commands
$ pipeline dev validate ./my_pipeline.yaml
β Syntax valid
β All referenced files exist
β No circular dependencies detected
β οΈ Warning: Deep nesting at step 'analyze' (depth: 6)
$ pipeline dev analyze ./my_pipeline.yaml
Pipeline Analysis: my_pipeline
- Total steps: 45
- Max depth: 6
- Estimated duration: 2-5 minutes
- Memory requirement: ~500MB
- External calls: 12 (8 Claude, 4 API)
$ pipeline dev visualize ./my_pipeline.yaml --output graph.png
Generated pipeline visualization: graph.png
$ pipeline dev profile ./my_pipeline.yaml --iterations 5
Running 5 iterations for profiling...
Average duration: 3,456ms
Std deviation: 234ms
Bottlenecks identified:
1. data_transform step (45% of total time)
2. api_batch_call step (23% of total time)
VS Code Extension
Install the Pipeline Developer extension for:
- Syntax highlighting for pipeline YAML
- Inline error detection
- Go to definition for pipeline references
- Hover documentation
- Debugging integration
- Performance hints
Development Mode Features
# Enable development mode
config:
development_mode: true
dev_features:
hot_reload: true # Reload pipelines on change
verbose_logging: true # Detailed execution logs
mock_llm_calls: true # Use mock responses
synthetic_delays: false # Add artificial delays
record_replay: true # Record/replay executions
Testing and Validation
Pipeline Testing Framework
defmodule MyPipelineTest do
use Pipeline.TestCase
describe "nested pipeline execution" do
test "processes data correctly through multiple levels" do
# Setup test data
input = %{data: [1, 2, 3, 4, 5]}
# Execute pipeline with test helpers
result = execute_pipeline("./pipelines/processor.yaml",
inputs: input,
mock_llm: true,
max_depth: 3
)
# Assert execution succeeded
assert result.status == :success
assert result.depth_reached == 2
assert length(result.steps_executed) == 15
# Verify specific outputs
assert result.outputs.processed_count == 5
assert result.outputs.validation_passed == true
# Check performance
assert result.duration_ms < 1000
assert result.memory_peak_mb < 100
end
test "handles errors gracefully at depth 3" do
# Test error propagation
result = execute_pipeline("./pipelines/error_test.yaml",
inputs: %{trigger_error_at_depth: 3}
)
assert result.status == :error
assert result.error.depth == 3
assert result.error.message =~ "Simulated error"
# Verify partial results were preserved
assert result.completed_steps == ["step1", "step2"]
end
end
end
Mock Execution Mode
# Use mocks for testing
- name: "test_pipeline"
type: "pipeline"
pipeline_file: "./processor.yaml"
config:
mock_mode: true
mock_responses:
"validate_step": {status: "valid", score: 95}
"transform_step": {result: "transformed_data"}
mock_delays:
"api_call": 100 # Simulate 100ms delay
Validation Tools
# Validate pipeline before execution
case Pipeline.Validator.validate_pipeline(pipeline_config) do
{:ok, validated_config} ->
Pipeline.execute(validated_config)
{:error, validation_errors} ->
Enum.each(validation_errors, fn error ->
IO.puts("Validation error: #{error.message}")
IO.puts(" Location: #{error.path}")
IO.puts(" Suggestion: #{error.suggestion}")
end)
end
Best Practices
1. Structured Logging
# Use structured logging for better debugging
Logger.info("Pipeline execution started",
pipeline_id: pipeline_id,
parent_id: parent_id,
depth: depth,
input_size: byte_size(input_data),
trace_id: trace_id
)
# Configure log aggregation
config :logger,
backends: [
{LoggerJSON.Formatters.Datadog, :datadog},
{Logger.Backends.Console, :console}
]
2. Error Context Preservation
# Preserve context for debugging
- name: "process_with_context"
type: "pipeline"
pipeline_file: "./processor.yaml"
config:
preserve_error_context: true
error_context_fields:
- "input_data"
- "previous_results"
- "execution_metadata"
3. Performance Budgets
# Set performance budgets
config:
performance_budgets:
total_duration_ms: 5000
step_duration_ms: 1000
memory_usage_mb: 512
on_budget_exceeded:
action: "warn" # warn | error | abort
notify: ["[email protected]"]
4. Debug-Friendly Pipeline Design
# Design pipelines for debuggability
workflow:
name: "debuggable_workflow"
metadata:
version: "1.2.3"
owner: "data-team"
sla_ms: 5000
# Add checkpoints for debugging
steps:
- name: "checkpoint_1"
type: "claude"
prompt: "Log state: {{json(context)}}"
metadata:
checkpoint: true
- name: "main_processing"
type: "pipeline"
pipeline_file: "./processor.yaml"
- name: "checkpoint_2"
type: "claude"
prompt: "Verify results: {{json(steps)}}"
metadata:
checkpoint: true
5. Monitoring Integration
# Integrate with monitoring systems
defmodule Pipeline.Monitoring do
def setup do
# Datadog APM
DatadogAPM.trace("pipeline.execution") do
Pipeline.execute(config)
end
# Custom metrics
StatsD.increment("pipeline.executions.total",
tags: ["pipeline:#{name}", "env:#{env}"]
)
# Health checks
HealthCheck.register(:pipeline_executor,
fn -> check_pipeline_health() end
)
end
end
Troubleshooting Guide
Common Issues and Solutions
1. Missing Trace Information
Problem: Traces not showing complete information
Solution:
config:
tracing:
capture_all: true
include_sensitive: false # Be careful in production
max_span_attributes: 100
sampling_rate: 1.0 # Capture all in dev
2. Debug Session Not Connecting
Problem: Can’t connect to debug session
Diagnostic:
# Check if debug server is running
$ pipeline debug status
Debug server: inactive
# Start debug server
$ pipeline debug server --port 9999
# Verify connection
$ netstat -an | grep 9999
tcp 0.0.0.0:9999 LISTEN
3. Performance Metrics Missing
Problem: Performance analysis returns incomplete data
Solution:
# Enable comprehensive metrics collection
config :pipeline, :metrics,
collect_all: true,
resolution_ms: 10,
persist_to_disk: true,
retention_hours: 24
4. Large Trace Data
Problem: Traces too large for analysis
Solution:
config:
tracing:
max_trace_size_mb: 10
compression: :gzip
filter_large_fields: true
summarize_arrays: true # Replace large arrays with summaries
Debug Checklist
When debugging pipeline issues:
Enable comprehensive logging
Logger.configure(level: :debug)
Check execution traces
pipeline trace show <trace_id>
Review resource usage
pipeline metrics <execution_id>
Inspect error context
pipeline errors <execution_id> --full-context
Analyze performance
pipeline perf analyze <execution_id>
Export debug data
pipeline debug export <execution_id> --output debug_bundle.zip
API Reference
Debug API
# Start debug session
Pipeline.Debug.NestedExecution.start_debug_session(trace_context, options \\ [])
# Inspect execution state
Pipeline.Debug.NestedExecution.inspect_span(span_id)
Pipeline.Debug.NestedExecution.get_variables_at_span(span_id)
Pipeline.Debug.NestedExecution.get_execution_tree(trace_id)
# Interactive debugging
Pipeline.Debug.NestedExecution.set_breakpoint(pipeline_id, step_name)
Pipeline.Debug.NestedExecution.remove_breakpoint(breakpoint_id)
Pipeline.Debug.NestedExecution.continue_execution(session_id)
Pipeline.Debug.NestedExecution.step_over(session_id)
# Performance analysis
Pipeline.Metrics.NestedPerformance.analyze_performance(execution_id)
Pipeline.Metrics.NestedPerformance.get_bottlenecks(execution_id, top_n \\ 5)
Pipeline.Metrics.NestedPerformance.calculate_grade(metrics)
Tracing API
# Span management
Pipeline.Tracing.NestedExecution.start_span(name, attributes \\ %{})
Pipeline.Tracing.NestedExecution.end_span(span_id, status \\ :ok)
Pipeline.Tracing.NestedExecution.add_span_event(span_id, event_name, attributes)
Pipeline.Tracing.NestedExecution.set_span_attributes(span_id, attributes)
# Trace context
Pipeline.Tracing.NestedExecution.get_current_trace_context()
Pipeline.Tracing.NestedExecution.with_trace_context(context, fun)
# Visualization
Pipeline.Tracing.NestedExecution.visualize_trace(trace_id, format \\ :tree)
Pipeline.Tracing.NestedExecution.export_trace(trace_id, format \\ :otlp)
Error Formatting API
# Error formatting
Pipeline.Error.NestedPipeline.format_error(error, context, options \\ [])
Pipeline.Error.NestedPipeline.format_stack_trace(execution_chain)
Pipeline.Error.NestedPipeline.add_suggestions(error, context)
# Error context
Pipeline.Error.NestedPipeline.capture_error_context(error, context)
Pipeline.Error.NestedPipeline.get_error_metadata(error)
Telemetry Configuration
# Telemetry event structure
%{
event: [:pipeline, :nested, :stop],
measurements: %{
duration: 1_234_567_890, # nanoseconds
memory_delta: 12_345_678 # bytes
},
metadata: %{
pipeline_id: "processor",
trace_id: "abc123",
span_id: "def456",
parent_span_id: "ghi789",
depth: 2,
status: :success,
step_count: 15
}
}
This guide provides comprehensive documentation for the developer experience features in recursive pipelines. These tools enable efficient debugging, monitoring, and optimization of complex nested pipeline executions.