Analysis Pipelines Specification
Overview
Analysis pipelines provide comprehensive examination and understanding of codebases, dependencies, performance characteristics, and security vulnerabilities. These pipelines transform raw code and system data into actionable insights through multi-stage processing, intelligent pattern recognition, and contextual understanding.
Pipeline Categories
1. Codebase Analysis Pipeline
Purpose
Deep understanding of code structure, patterns, and relationships within a codebase to facilitate refactoring, documentation, and architectural decisions.
Configuration Structure
name: codebase_analysis_pipeline
version: "2.0"
type: analysis
description: "Comprehensive codebase analysis with multi-dimensional insights"
metadata:
category: analysis
sub_category: codebase
estimated_duration: "5-30 minutes"
resource_requirements:
memory: "medium-high"
compute: "medium"
inputs:
codebase_path:
type: string
description: "Root path of codebase to analyze"
required: true
validation:
pattern: "^[/\\w.-]+$"
analysis_depth:
type: string
enum: ["shallow", "standard", "deep", "exhaustive"]
default: "standard"
description: "Depth of analysis to perform"
focus_areas:
type: array
items:
type: string
enum: ["architecture", "patterns", "complexity", "dependencies", "quality", "documentation"]
default: ["architecture", "patterns", "complexity"]
description: "Specific areas to focus analysis on"
steps:
- name: scan_codebase
type: file_scan
config:
patterns:
- "**/*.{ex,exs}"
- "**/*.{js,jsx,ts,tsx}"
- "**/*.{py,rb,go,java}"
- "**/mix.exs"
- "**/package.json"
- "**/requirements.txt"
ignore_patterns:
- "**/node_modules/**"
- "**/_build/**"
- "**/deps/**"
- "**/.git/**"
outputs:
- file_list
- name: build_dependency_graph
type: dependency_analysis
inputs:
files: "{{ file_list }}"
config:
analysis_type: "{{ analysis_depth }}"
include_external: true
resolve_versions: true
outputs:
- dependency_graph
- external_dependencies
- circular_dependencies
- name: analyze_architecture
type: llm_analysis
when: "{{ 'architecture' in focus_areas }}"
inputs:
dependency_graph: "{{ dependency_graph }}"
file_samples: "{{ file_list | sample(20) | read_files }}"
prompt: |
Analyze the software architecture of this codebase:
Dependency structure:
{{ dependency_graph | to_yaml }}
Code samples:
{{ file_samples }}
Identify:
1. Architectural patterns (MVC, hexagonal, layered, etc.)
2. Core domain boundaries
3. Integration points
4. Coupling and cohesion analysis
5. Architectural smells or anti-patterns
Format as structured analysis with clear sections.
outputs:
- architecture_analysis
- name: detect_patterns
type: pattern_detection
when: "{{ 'patterns' in focus_areas }}"
inputs:
files: "{{ file_list }}"
config:
patterns_to_detect:
- design_patterns
- anti_patterns
- code_smells
- security_patterns
outputs:
- detected_patterns
- pattern_locations
- name: measure_complexity
type: complexity_analysis
when: "{{ 'complexity' in focus_areas }}"
inputs:
files: "{{ file_list }}"
config:
metrics:
- cyclomatic_complexity
- cognitive_complexity
- lines_of_code
- nesting_depth
- coupling_metrics
outputs:
- complexity_metrics
- complexity_hotspots
- name: generate_insights
type: llm_synthesis
inputs:
architecture: "{{ architecture_analysis | default('N/A') }}"
patterns: "{{ detected_patterns | default([]) }}"
complexity: "{{ complexity_metrics | default({}) }}"
dependencies: "{{ dependency_graph }}"
prompt: |
Synthesize the codebase analysis results into actionable insights:
{{ inputs | to_yaml }}
Generate:
1. Executive summary (3-5 key findings)
2. Health score (0-100) with justification
3. Top 5 improvement recommendations
4. Risk assessment
5. Technical debt evaluation
Be specific and actionable.
outputs:
- codebase_insights
- health_score
- recommendations
outputs:
analysis_report:
type: structured_report
includes:
- codebase_insights
- health_score
- recommendations
- architecture_analysis
- complexity_metrics
- detected_patterns
dependency_visualization:
type: graph
source: dependency_graph
format: ["dot", "mermaid", "json"]
actionable_items:
type: task_list
source: recommendations
priority_ranked: true
2. Security Audit Pipeline
Purpose
Identify security vulnerabilities, misconfigurations, and compliance violations through static analysis, dependency scanning, and intelligent pattern matching.
Configuration Structure
name: security_audit_pipeline
version: "2.0"
type: analysis
description: "Comprehensive security vulnerability and compliance analysis"
metadata:
category: analysis
sub_category: security
compliance_frameworks: ["OWASP", "CWE", "SANS"]
severity_threshold: "medium"
inputs:
target_path:
type: string
required: true
description: "Path to audit"
scan_types:
type: array
items:
type: string
enum: ["sast", "dependency", "secrets", "configuration", "compliance"]
default: ["sast", "dependency", "secrets"]
severity_filter:
type: string
enum: ["critical", "high", "medium", "low", "all"]
default: "medium"
steps:
- name: static_analysis
type: sast_scan
when: "{{ 'sast' in scan_types }}"
config:
scanners:
- semgrep
- bandit
- eslint-security
rules_sets:
- owasp-top-10
- cwe-top-25
- custom-rules
outputs:
- sast_findings
- name: dependency_scan
type: dependency_vulnerability_scan
when: "{{ 'dependency' in scan_types }}"
config:
databases:
- nvd
- github-advisory
- snyk
check_transitive: true
license_check: true
outputs:
- vulnerable_dependencies
- license_issues
- name: secret_detection
type: secret_scan
when: "{{ 'secrets' in scan_types }}"
config:
patterns:
- api_keys
- passwords
- tokens
- certificates
entropy_threshold: 4.5
outputs:
- detected_secrets
- name: analyze_attack_surface
type: llm_analysis
inputs:
sast: "{{ sast_findings | default([]) }}"
deps: "{{ vulnerable_dependencies | default([]) }}"
secrets: "{{ detected_secrets | default([]) }}"
prompt: |
Analyze the attack surface based on findings:
Static Analysis: {{ sast | count }} findings
Vulnerable Dependencies: {{ deps | count }} issues
Exposed Secrets: {{ secrets | count }} detected
Details:
{{ inputs | to_yaml }}
Provide:
1. Attack surface assessment
2. Exploitability analysis
3. Risk prioritization matrix
4. Remediation roadmap
5. Security posture score (0-100)
outputs:
- attack_surface_analysis
- security_score
- name: generate_remediation_plan
type: remediation_generator
inputs:
findings: "{{ steps | collect_findings }}"
severity_filter: "{{ severity_filter }}"
config:
include_patches: true
estimate_effort: true
group_by: ["severity", "type", "component"]
outputs:
- remediation_plan
- effort_estimates
outputs:
security_report:
type: security_report
format: ["json", "html", "pdf"]
includes:
- executive_summary
- findings_by_severity
- attack_surface_analysis
- remediation_plan
compliance_status:
type: compliance_matrix
frameworks: "{{ metadata.compliance_frameworks }}"
ci_integration:
type: ci_friendly_output
fail_on: "{{ severity_filter }}"
3. Performance Analysis Pipeline
Purpose
Identify performance bottlenecks, resource inefficiencies, and optimization opportunities through profiling, benchmarking, and intelligent analysis.
Configuration Structure
name: performance_analysis_pipeline
version: "2.0"
type: analysis
description: "Performance profiling and optimization recommendation"
metadata:
category: analysis
sub_category: performance
profiling_tools: ["perf", "flamegraph", "telemetry"]
inputs:
application_path:
type: string
required: true
analysis_scenarios:
type: array
items:
type: object
properties:
name: string
load_profile: string
duration: integer
default:
- name: "baseline"
load_profile: "normal"
duration: 300
steps:
- name: static_performance_analysis
type: code_analysis
config:
checks:
- n_plus_one_queries
- inefficient_algorithms
- memory_leaks
- blocking_operations
- cache_opportunities
outputs:
- static_issues
- name: setup_profiling
type: profiling_setup
config:
tools: "{{ metadata.profiling_tools }}"
sampling_rate: 1000
include_memory: true
include_io: true
outputs:
- profiling_config
- name: run_performance_scenarios
type: scenario_runner
inputs:
scenarios: "{{ analysis_scenarios }}"
config: "{{ profiling_config }}"
config:
parallel: false
warmup_duration: 60
collect_metrics:
- cpu_usage
- memory_usage
- io_operations
- network_calls
- database_queries
outputs:
- performance_data
- flame_graphs
- metrics_timeline
- name: identify_bottlenecks
type: bottleneck_analysis
inputs:
performance_data: "{{ performance_data }}"
static_issues: "{{ static_issues }}"
config:
threshold_percentile: 95
minimum_impact: 5
outputs:
- bottlenecks
- hotspots
- name: generate_optimizations
type: llm_optimization
inputs:
bottlenecks: "{{ bottlenecks }}"
flame_graphs: "{{ flame_graphs }}"
code_context: "{{ bottlenecks | extract_code_context }}"
prompt: |
Analyze performance bottlenecks and suggest optimizations:
Bottlenecks:
{{ bottlenecks | to_yaml }}
Code context:
{{ code_context }}
Generate:
1. Root cause analysis for each bottleneck
2. Specific optimization recommendations
3. Implementation code examples
4. Expected performance improvement
5. Trade-offs and considerations
Prioritize by impact and implementation effort.
outputs:
- optimization_recommendations
- implementation_examples
outputs:
performance_report:
type: performance_report
includes:
- executive_summary
- bottleneck_analysis
- optimization_roadmap
- before_after_comparisons
optimization_patches:
type: code_patches
source: implementation_examples
monitoring_config:
type: monitoring_setup
metrics: "{{ bottlenecks | to_monitoring_metrics }}"
4. Dependency Analysis Pipeline
Purpose
Comprehensive analysis of project dependencies including security vulnerabilities, license compliance, update recommendations, and dependency graph visualization.
Configuration Structure
name: dependency_analysis_pipeline
version: "2.0"
type: analysis
description: "Deep dependency analysis with security and compliance checks"
metadata:
category: analysis
sub_category: dependencies
supported_ecosystems: ["npm", "hex", "pip", "gem", "cargo", "go"]
inputs:
project_path:
type: string
required: true
analysis_types:
type: array
items:
type: string
enum: ["security", "licenses", "updates", "usage", "graph"]
default: ["security", "licenses", "updates"]
include_transitive:
type: boolean
default: true
steps:
- name: detect_package_managers
type: ecosystem_detection
inputs:
path: "{{ project_path }}"
outputs:
- detected_ecosystems
- manifest_files
- name: build_dependency_tree
type: dependency_resolver
inputs:
manifests: "{{ manifest_files }}"
include_transitive: "{{ include_transitive }}"
config:
parallel_resolution: true
include_dev_dependencies: true
resolve_conflicts: true
outputs:
- dependency_tree
- version_conflicts
- name: security_analysis
type: vulnerability_check
when: "{{ 'security' in analysis_types }}"
inputs:
dependencies: "{{ dependency_tree }}"
config:
vulnerability_databases:
- nvd
- github_advisory
- ecosystem_specific
include_cvss_scores: true
check_poc_exploits: true
outputs:
- vulnerabilities
- risk_score
- name: license_analysis
type: license_check
when: "{{ 'licenses' in analysis_types }}"
inputs:
dependencies: "{{ dependency_tree }}"
config:
approved_licenses:
- MIT
- Apache-2.0
- BSD-3-Clause
check_compatibility: true
include_obligations: true
outputs:
- license_summary
- compatibility_issues
- obligations
- name: update_analysis
type: version_check
when: "{{ 'updates' in analysis_types }}"
inputs:
dependencies: "{{ dependency_tree }}"
config:
update_strategy: "conservative"
check_breaking_changes: true
include_changelogs: true
outputs:
- available_updates
- breaking_changes
- update_recommendations
- name: usage_analysis
type: code_usage_scan
when: "{{ 'usage' in analysis_types }}"
inputs:
dependencies: "{{ dependency_tree }}"
codebase: "{{ project_path }}"
config:
track_imports: true
identify_unused: true
measure_coupling: true
outputs:
- usage_statistics
- unused_dependencies
- coupling_metrics
- name: generate_insights
type: llm_analysis
inputs:
tree: "{{ dependency_tree }}"
vulnerabilities: "{{ vulnerabilities | default([]) }}"
licenses: "{{ license_summary | default({}) }}"
updates: "{{ available_updates | default([]) }}"
usage: "{{ usage_statistics | default({}) }}"
prompt: |
Analyze the dependency landscape:
Total dependencies: {{ tree | count_total }}
Direct: {{ tree | count_direct }}
Transitive: {{ tree | count_transitive }}
Vulnerabilities: {{ vulnerabilities | count }}
License issues: {{ licenses.issues | count }}
Available updates: {{ updates | count }}
Details:
{{ inputs | to_yaml }}
Generate:
1. Dependency health score (0-100)
2. Critical action items (security/legal risks)
3. Optimization opportunities (remove unused, consolidate)
4. Update strategy recommendation
5. Long-term dependency management plan
outputs:
- dependency_insights
- health_score
- action_plan
outputs:
dependency_report:
type: comprehensive_report
includes:
- health_score
- vulnerability_summary
- license_compliance
- update_roadmap
- usage_insights
dependency_graph:
type: visualization
format: ["svg", "interactive_html", "dot"]
remediation_scripts:
type: shell_scripts
actions:
- update_vulnerable
- remove_unused
- fix_licenses
Reusable Components
1. Code Analysis Components
AST Parser Component
component: ast_parser
type: analysis
description: "Parse code into Abstract Syntax Tree"
inputs:
source_code: string
language: string
config:
parsers:
elixir: "elixir_ast"
javascript: "babel"
python: "ast"
ruby: "parser"
outputs:
ast: object
parse_errors: array
Pattern Matcher Component
component: pattern_matcher
type: analysis
description: "Match patterns in code using AST or regex"
inputs:
target: string | object # code or AST
patterns: array
config:
pattern_types:
- ast_patterns
- regex_patterns
- semantic_patterns
outputs:
matches: array
match_locations: array
2. Security Components
Vulnerability Scanner Component
component: vulnerability_scanner
type: security
description: "Scan for known vulnerabilities"
inputs:
target_type: string # "code" | "dependencies" | "configuration"
target_data: any
config:
databases:
- nvd
- cve
- ecosystem_specific
severity_scoring: "cvss_v3"
outputs:
vulnerabilities: array
severity_distribution: object
3. Performance Components
Profiler Component
component: profiler
type: performance
description: "Profile code execution"
inputs:
executable: string
arguments: array
scenario: object
config:
profiling_types:
- cpu
- memory
- io
- network
output_formats:
- flamegraph
- callgrind
- json
outputs:
profile_data: object
visualizations: array
Integration Patterns
1. CI/CD Integration
integration: ci_cd
triggers:
- pull_request
- pre_commit
- scheduled
configuration:
fail_conditions:
security_severity: "high"
performance_regression: 10
complexity_increase: 20
reporting:
formats: ["junit", "github_annotations", "slack"]
2. IDE Integration
integration: ide
supported:
- vscode
- intellij
- neovim
features:
- real_time_analysis
- inline_suggestions
- refactoring_actions
Performance Considerations
1. Incremental Analysis
- Cache previous analysis results
- Only analyze changed files
- Reuse dependency graphs
- Incremental AST updates
2. Parallel Processing
- File scanning in parallel
- Independent analysis steps run concurrently
- Distributed analysis for large codebases
- Result aggregation strategies
3. Resource Management
- Memory limits for AST parsing
- Timeout configurations
- CPU throttling options
- Storage optimization for results
Error Handling
1. Graceful Degradation
- Continue analysis on partial failures
- Provide partial results with confidence scores
- Fall back to simpler analysis methods
- Clear error reporting with recovery suggestions
2. Recovery Strategies
- Retry with exponential backoff
- Alternative analysis paths
- Manual intervention points
- State persistence for resume capability
Testing Strategies
1. Pipeline Testing
test_scenarios:
- name: "Small Elixir project"
fixture: "test/fixtures/small_elixir"
expected_findings: 5-10
max_duration: 60s
- name: "Large JavaScript monorepo"
fixture: "test/fixtures/large_js"
expected_findings: 50-100
max_duration: 600s
2. Component Testing
- Unit tests for each analysis component
- Integration tests for component combinations
- Performance benchmarks
- Security validation tests
Future Enhancements
1. Machine Learning Integration
- Pattern learning from codebase history
- Anomaly detection in code changes
- Predictive vulnerability analysis
- Automated fix generation
2. Real-time Analysis
- File watcher integration
- Incremental analysis on save
- Live performance monitoring
- Continuous security scanning
3. Collaborative Features
- Team dashboards
- Trend analysis over time
- Comparative analysis between projects
- Knowledge sharing mechanisms