← Back to Specifications

05 analysis pipelines

Documentation for 05_analysis_pipelines from the Pipeline ex repository.

Analysis Pipelines Specification

Overview

Analysis pipelines provide comprehensive examination and understanding of codebases, dependencies, performance characteristics, and security vulnerabilities. These pipelines transform raw code and system data into actionable insights through multi-stage processing, intelligent pattern recognition, and contextual understanding.

Pipeline Categories

1. Codebase Analysis Pipeline

Purpose

Deep understanding of code structure, patterns, and relationships within a codebase to facilitate refactoring, documentation, and architectural decisions.

Configuration Structure

name: codebase_analysis_pipeline
version: "2.0"
type: analysis
description: "Comprehensive codebase analysis with multi-dimensional insights"

metadata:
  category: analysis
  sub_category: codebase
  estimated_duration: "5-30 minutes"
  resource_requirements:
    memory: "medium-high"
    compute: "medium"

inputs:
  codebase_path:
    type: string
    description: "Root path of codebase to analyze"
    required: true
    validation:
      pattern: "^[/\\w.-]+$"
  
  analysis_depth:
    type: string
    enum: ["shallow", "standard", "deep", "exhaustive"]
    default: "standard"
    description: "Depth of analysis to perform"
  
  focus_areas:
    type: array
    items:
      type: string
      enum: ["architecture", "patterns", "complexity", "dependencies", "quality", "documentation"]
    default: ["architecture", "patterns", "complexity"]
    description: "Specific areas to focus analysis on"

steps:
  - name: scan_codebase
    type: file_scan
    config:
      patterns:
        - "**/*.{ex,exs}"
        - "**/*.{js,jsx,ts,tsx}"
        - "**/*.{py,rb,go,java}"
        - "**/mix.exs"
        - "**/package.json"
        - "**/requirements.txt"
      ignore_patterns:
        - "**/node_modules/**"
        - "**/_build/**"
        - "**/deps/**"
        - "**/.git/**"
    outputs:
      - file_list

  - name: build_dependency_graph
    type: dependency_analysis
    inputs:
      files: "{{ file_list }}"
    config:
      analysis_type: "{{ analysis_depth }}"
      include_external: true
      resolve_versions: true
    outputs:
      - dependency_graph
      - external_dependencies
      - circular_dependencies

  - name: analyze_architecture
    type: llm_analysis
    when: "{{ 'architecture' in focus_areas }}"
    inputs:
      dependency_graph: "{{ dependency_graph }}"
      file_samples: "{{ file_list | sample(20) | read_files }}"
    prompt: |
      Analyze the software architecture of this codebase:
      
      Dependency structure:
      {{ dependency_graph | to_yaml }}
      
      Code samples:
      {{ file_samples }}
      
      Identify:
      1. Architectural patterns (MVC, hexagonal, layered, etc.)
      2. Core domain boundaries
      3. Integration points
      4. Coupling and cohesion analysis
      5. Architectural smells or anti-patterns
      
      Format as structured analysis with clear sections.
    outputs:
      - architecture_analysis

  - name: detect_patterns
    type: pattern_detection
    when: "{{ 'patterns' in focus_areas }}"
    inputs:
      files: "{{ file_list }}"
    config:
      patterns_to_detect:
        - design_patterns
        - anti_patterns
        - code_smells
        - security_patterns
    outputs:
      - detected_patterns
      - pattern_locations

  - name: measure_complexity
    type: complexity_analysis
    when: "{{ 'complexity' in focus_areas }}"
    inputs:
      files: "{{ file_list }}"
    config:
      metrics:
        - cyclomatic_complexity
        - cognitive_complexity
        - lines_of_code
        - nesting_depth
        - coupling_metrics
    outputs:
      - complexity_metrics
      - complexity_hotspots

  - name: generate_insights
    type: llm_synthesis
    inputs:
      architecture: "{{ architecture_analysis | default('N/A') }}"
      patterns: "{{ detected_patterns | default([]) }}"
      complexity: "{{ complexity_metrics | default({}) }}"
      dependencies: "{{ dependency_graph }}"
    prompt: |
      Synthesize the codebase analysis results into actionable insights:
      
      {{ inputs | to_yaml }}
      
      Generate:
      1. Executive summary (3-5 key findings)
      2. Health score (0-100) with justification
      3. Top 5 improvement recommendations
      4. Risk assessment
      5. Technical debt evaluation
      
      Be specific and actionable.
    outputs:
      - codebase_insights
      - health_score
      - recommendations

outputs:
  analysis_report:
    type: structured_report
    includes:
      - codebase_insights
      - health_score
      - recommendations
      - architecture_analysis
      - complexity_metrics
      - detected_patterns
  
  dependency_visualization:
    type: graph
    source: dependency_graph
    format: ["dot", "mermaid", "json"]
  
  actionable_items:
    type: task_list
    source: recommendations
    priority_ranked: true

2. Security Audit Pipeline

Purpose

Identify security vulnerabilities, misconfigurations, and compliance violations through static analysis, dependency scanning, and intelligent pattern matching.

Configuration Structure

name: security_audit_pipeline
version: "2.0"
type: analysis
description: "Comprehensive security vulnerability and compliance analysis"

metadata:
  category: analysis
  sub_category: security
  compliance_frameworks: ["OWASP", "CWE", "SANS"]
  severity_threshold: "medium"

inputs:
  target_path:
    type: string
    required: true
    description: "Path to audit"
  
  scan_types:
    type: array
    items:
      type: string
      enum: ["sast", "dependency", "secrets", "configuration", "compliance"]
    default: ["sast", "dependency", "secrets"]
  
  severity_filter:
    type: string
    enum: ["critical", "high", "medium", "low", "all"]
    default: "medium"

steps:
  - name: static_analysis
    type: sast_scan
    when: "{{ 'sast' in scan_types }}"
    config:
      scanners:
        - semgrep
        - bandit
        - eslint-security
      rules_sets:
        - owasp-top-10
        - cwe-top-25
        - custom-rules
    outputs:
      - sast_findings

  - name: dependency_scan
    type: dependency_vulnerability_scan
    when: "{{ 'dependency' in scan_types }}"
    config:
      databases:
        - nvd
        - github-advisory
        - snyk
      check_transitive: true
      license_check: true
    outputs:
      - vulnerable_dependencies
      - license_issues

  - name: secret_detection
    type: secret_scan
    when: "{{ 'secrets' in scan_types }}"
    config:
      patterns:
        - api_keys
        - passwords
        - tokens
        - certificates
      entropy_threshold: 4.5
    outputs:
      - detected_secrets

  - name: analyze_attack_surface
    type: llm_analysis
    inputs:
      sast: "{{ sast_findings | default([]) }}"
      deps: "{{ vulnerable_dependencies | default([]) }}"
      secrets: "{{ detected_secrets | default([]) }}"
    prompt: |
      Analyze the attack surface based on findings:
      
      Static Analysis: {{ sast | count }} findings
      Vulnerable Dependencies: {{ deps | count }} issues
      Exposed Secrets: {{ secrets | count }} detected
      
      Details:
      {{ inputs | to_yaml }}
      
      Provide:
      1. Attack surface assessment
      2. Exploitability analysis
      3. Risk prioritization matrix
      4. Remediation roadmap
      5. Security posture score (0-100)
    outputs:
      - attack_surface_analysis
      - security_score

  - name: generate_remediation_plan
    type: remediation_generator
    inputs:
      findings: "{{ steps | collect_findings }}"
      severity_filter: "{{ severity_filter }}"
    config:
      include_patches: true
      estimate_effort: true
      group_by: ["severity", "type", "component"]
    outputs:
      - remediation_plan
      - effort_estimates

outputs:
  security_report:
    type: security_report
    format: ["json", "html", "pdf"]
    includes:
      - executive_summary
      - findings_by_severity
      - attack_surface_analysis
      - remediation_plan
  
  compliance_status:
    type: compliance_matrix
    frameworks: "{{ metadata.compliance_frameworks }}"
    
  ci_integration:
    type: ci_friendly_output
    fail_on: "{{ severity_filter }}"

3. Performance Analysis Pipeline

Purpose

Identify performance bottlenecks, resource inefficiencies, and optimization opportunities through profiling, benchmarking, and intelligent analysis.

Configuration Structure

name: performance_analysis_pipeline
version: "2.0"
type: analysis
description: "Performance profiling and optimization recommendation"

metadata:
  category: analysis
  sub_category: performance
  profiling_tools: ["perf", "flamegraph", "telemetry"]

inputs:
  application_path:
    type: string
    required: true
  
  analysis_scenarios:
    type: array
    items:
      type: object
      properties:
        name: string
        load_profile: string
        duration: integer
    default:
      - name: "baseline"
        load_profile: "normal"
        duration: 300

steps:
  - name: static_performance_analysis
    type: code_analysis
    config:
      checks:
        - n_plus_one_queries
        - inefficient_algorithms
        - memory_leaks
        - blocking_operations
        - cache_opportunities
    outputs:
      - static_issues

  - name: setup_profiling
    type: profiling_setup
    config:
      tools: "{{ metadata.profiling_tools }}"
      sampling_rate: 1000
      include_memory: true
      include_io: true
    outputs:
      - profiling_config

  - name: run_performance_scenarios
    type: scenario_runner
    inputs:
      scenarios: "{{ analysis_scenarios }}"
      config: "{{ profiling_config }}"
    config:
      parallel: false
      warmup_duration: 60
      collect_metrics:
        - cpu_usage
        - memory_usage
        - io_operations
        - network_calls
        - database_queries
    outputs:
      - performance_data
      - flame_graphs
      - metrics_timeline

  - name: identify_bottlenecks
    type: bottleneck_analysis
    inputs:
      performance_data: "{{ performance_data }}"
      static_issues: "{{ static_issues }}"
    config:
      threshold_percentile: 95
      minimum_impact: 5
    outputs:
      - bottlenecks
      - hotspots

  - name: generate_optimizations
    type: llm_optimization
    inputs:
      bottlenecks: "{{ bottlenecks }}"
      flame_graphs: "{{ flame_graphs }}"
      code_context: "{{ bottlenecks | extract_code_context }}"
    prompt: |
      Analyze performance bottlenecks and suggest optimizations:
      
      Bottlenecks:
      {{ bottlenecks | to_yaml }}
      
      Code context:
      {{ code_context }}
      
      Generate:
      1. Root cause analysis for each bottleneck
      2. Specific optimization recommendations
      3. Implementation code examples
      4. Expected performance improvement
      5. Trade-offs and considerations
      
      Prioritize by impact and implementation effort.
    outputs:
      - optimization_recommendations
      - implementation_examples

outputs:
  performance_report:
    type: performance_report
    includes:
      - executive_summary
      - bottleneck_analysis
      - optimization_roadmap
      - before_after_comparisons
  
  optimization_patches:
    type: code_patches
    source: implementation_examples
    
  monitoring_config:
    type: monitoring_setup
    metrics: "{{ bottlenecks | to_monitoring_metrics }}"

4. Dependency Analysis Pipeline

Purpose

Comprehensive analysis of project dependencies including security vulnerabilities, license compliance, update recommendations, and dependency graph visualization.

Configuration Structure

name: dependency_analysis_pipeline
version: "2.0"
type: analysis
description: "Deep dependency analysis with security and compliance checks"

metadata:
  category: analysis
  sub_category: dependencies
  supported_ecosystems: ["npm", "hex", "pip", "gem", "cargo", "go"]

inputs:
  project_path:
    type: string
    required: true
  
  analysis_types:
    type: array
    items:
      type: string
      enum: ["security", "licenses", "updates", "usage", "graph"]
    default: ["security", "licenses", "updates"]
  
  include_transitive:
    type: boolean
    default: true

steps:
  - name: detect_package_managers
    type: ecosystem_detection
    inputs:
      path: "{{ project_path }}"
    outputs:
      - detected_ecosystems
      - manifest_files

  - name: build_dependency_tree
    type: dependency_resolver
    inputs:
      manifests: "{{ manifest_files }}"
      include_transitive: "{{ include_transitive }}"
    config:
      parallel_resolution: true
      include_dev_dependencies: true
      resolve_conflicts: true
    outputs:
      - dependency_tree
      - version_conflicts

  - name: security_analysis
    type: vulnerability_check
    when: "{{ 'security' in analysis_types }}"
    inputs:
      dependencies: "{{ dependency_tree }}"
    config:
      vulnerability_databases:
        - nvd
        - github_advisory
        - ecosystem_specific
      include_cvss_scores: true
      check_poc_exploits: true
    outputs:
      - vulnerabilities
      - risk_score

  - name: license_analysis
    type: license_check
    when: "{{ 'licenses' in analysis_types }}"
    inputs:
      dependencies: "{{ dependency_tree }}"
    config:
      approved_licenses:
        - MIT
        - Apache-2.0
        - BSD-3-Clause
      check_compatibility: true
      include_obligations: true
    outputs:
      - license_summary
      - compatibility_issues
      - obligations

  - name: update_analysis
    type: version_check
    when: "{{ 'updates' in analysis_types }}"
    inputs:
      dependencies: "{{ dependency_tree }}"
    config:
      update_strategy: "conservative"
      check_breaking_changes: true
      include_changelogs: true
    outputs:
      - available_updates
      - breaking_changes
      - update_recommendations

  - name: usage_analysis
    type: code_usage_scan
    when: "{{ 'usage' in analysis_types }}"
    inputs:
      dependencies: "{{ dependency_tree }}"
      codebase: "{{ project_path }}"
    config:
      track_imports: true
      identify_unused: true
      measure_coupling: true
    outputs:
      - usage_statistics
      - unused_dependencies
      - coupling_metrics

  - name: generate_insights
    type: llm_analysis
    inputs:
      tree: "{{ dependency_tree }}"
      vulnerabilities: "{{ vulnerabilities | default([]) }}"
      licenses: "{{ license_summary | default({}) }}"
      updates: "{{ available_updates | default([]) }}"
      usage: "{{ usage_statistics | default({}) }}"
    prompt: |
      Analyze the dependency landscape:
      
      Total dependencies: {{ tree | count_total }}
      Direct: {{ tree | count_direct }}
      Transitive: {{ tree | count_transitive }}
      
      Vulnerabilities: {{ vulnerabilities | count }}
      License issues: {{ licenses.issues | count }}
      Available updates: {{ updates | count }}
      
      Details:
      {{ inputs | to_yaml }}
      
      Generate:
      1. Dependency health score (0-100)
      2. Critical action items (security/legal risks)
      3. Optimization opportunities (remove unused, consolidate)
      4. Update strategy recommendation
      5. Long-term dependency management plan
    outputs:
      - dependency_insights
      - health_score
      - action_plan

outputs:
  dependency_report:
    type: comprehensive_report
    includes:
      - health_score
      - vulnerability_summary
      - license_compliance
      - update_roadmap
      - usage_insights
  
  dependency_graph:
    type: visualization
    format: ["svg", "interactive_html", "dot"]
    
  remediation_scripts:
    type: shell_scripts
    actions:
      - update_vulnerable
      - remove_unused
      - fix_licenses

Reusable Components

1. Code Analysis Components

AST Parser Component

component: ast_parser
type: analysis
description: "Parse code into Abstract Syntax Tree"

inputs:
  source_code: string
  language: string

config:
  parsers:
    elixir: "elixir_ast"
    javascript: "babel"
    python: "ast"
    ruby: "parser"

outputs:
  ast: object
  parse_errors: array

Pattern Matcher Component

component: pattern_matcher
type: analysis
description: "Match patterns in code using AST or regex"

inputs:
  target: string | object  # code or AST
  patterns: array

config:
  pattern_types:
    - ast_patterns
    - regex_patterns
    - semantic_patterns

outputs:
  matches: array
  match_locations: array

2. Security Components

Vulnerability Scanner Component

component: vulnerability_scanner
type: security
description: "Scan for known vulnerabilities"

inputs:
  target_type: string  # "code" | "dependencies" | "configuration"
  target_data: any

config:
  databases:
    - nvd
    - cve
    - ecosystem_specific
  
  severity_scoring: "cvss_v3"

outputs:
  vulnerabilities: array
  severity_distribution: object

3. Performance Components

Profiler Component

component: profiler
type: performance
description: "Profile code execution"

inputs:
  executable: string
  arguments: array
  scenario: object

config:
  profiling_types:
    - cpu
    - memory
    - io
    - network
  
  output_formats:
    - flamegraph
    - callgrind
    - json

outputs:
  profile_data: object
  visualizations: array

Integration Patterns

1. CI/CD Integration

integration: ci_cd
triggers:
  - pull_request
  - pre_commit
  - scheduled

configuration:
  fail_conditions:
    security_severity: "high"
    performance_regression: 10
    complexity_increase: 20
  
  reporting:
    formats: ["junit", "github_annotations", "slack"]

2. IDE Integration

integration: ide
supported:
  - vscode
  - intellij
  - neovim

features:
  - real_time_analysis
  - inline_suggestions
  - refactoring_actions

Performance Considerations

1. Incremental Analysis

  • Cache previous analysis results
  • Only analyze changed files
  • Reuse dependency graphs
  • Incremental AST updates

2. Parallel Processing

  • File scanning in parallel
  • Independent analysis steps run concurrently
  • Distributed analysis for large codebases
  • Result aggregation strategies

3. Resource Management

  • Memory limits for AST parsing
  • Timeout configurations
  • CPU throttling options
  • Storage optimization for results

Error Handling

1. Graceful Degradation

  • Continue analysis on partial failures
  • Provide partial results with confidence scores
  • Fall back to simpler analysis methods
  • Clear error reporting with recovery suggestions

2. Recovery Strategies

  • Retry with exponential backoff
  • Alternative analysis paths
  • Manual intervention points
  • State persistence for resume capability

Testing Strategies

1. Pipeline Testing

test_scenarios:
  - name: "Small Elixir project"
    fixture: "test/fixtures/small_elixir"
    expected_findings: 5-10
    max_duration: 60s
    
  - name: "Large JavaScript monorepo"
    fixture: "test/fixtures/large_js"
    expected_findings: 50-100
    max_duration: 600s

2. Component Testing

  • Unit tests for each analysis component
  • Integration tests for component combinations
  • Performance benchmarks
  • Security validation tests

Future Enhancements

1. Machine Learning Integration

  • Pattern learning from codebase history
  • Anomaly detection in code changes
  • Predictive vulnerability analysis
  • Automated fix generation

2. Real-time Analysis

  • File watcher integration
  • Incremental analysis on save
  • Live performance monitoring
  • Continuous security scanning

3. Collaborative Features

  • Team dashboards
  • Trend analysis over time
  • Comparative analysis between projects
  • Knowledge sharing mechanisms