← Back to Specifications

08 pipeline composition framework

Documentation for 08_pipeline_composition_framework from the Pipeline ex repository.

Pipeline Composition Framework Specification

Overview

The Pipeline Composition Framework enables the creation of complex, reusable pipelines through modular composition, inheritance, and dynamic assembly. This framework provides the architectural foundation for building pipelines from smaller, tested components while maintaining flexibility and extensibility.

Core Concepts

1. Composition Principles

Modularity

Every pipeline component is self-contained with well-defined inputs, outputs, and behavior. Components can be composed without knowledge of internal implementation.

Reusability

Components are designed for reuse across different pipelines and contexts. Generic components adapt to specific use cases through configuration.

Composability

Components combine naturally through standard interfaces. Complex behaviors emerge from simple component combinations.

Extensibility

New components can be added without modifying existing ones. The framework supports custom component types and behaviors.

Component Architecture

1. Base Component Structure

component:
  name: component_identifier
  version: "1.0.0"
  type: component_type
  description: "Clear description of component purpose"
  
  metadata:
    author: "component_author"
    tags: ["category", "use-case"]
    license: "MIT"
    stability: "stable|beta|experimental"
  
  interface:
    inputs:
      - name: input_name
        type: data_type
        required: boolean
        description: "Input purpose"
        validation:
          schema: json_schema
    
    outputs:
      - name: output_name
        type: data_type
        description: "Output description"
        schema: json_schema
    
    parameters:
      - name: param_name
        type: data_type
        default: default_value
        description: "Parameter purpose"
        constraints:
          - constraint_definition
  
  implementation:
    type: "inline|reference|template"
    content: implementation_details
  
  requirements:
    dependencies:
      - dependency_spec
    resources:
      memory: "size"
      cpu: "cores"
      gpu: boolean
    providers:
      - provider_type

2. Component Types

Atomic Components

Indivisible units of functionality that perform single, well-defined tasks.

component:
  name: text_summarizer
  type: atomic
  
  interface:
    inputs:
      - name: text
        type: string
        required: true
    
    outputs:
      - name: summary
        type: string
    
    parameters:
      - name: max_length
        type: integer
        default: 100
  
  implementation:
    type: inline
    provider: openai
    prompt: |
      Summarize the following text in {{ max_length }} words:
      {{ text }}

Composite Components

Components built from other components, providing higher-level functionality.

component:
  name: document_processor
  type: composite
  
  components:
    - name: extractor
      component: text_extractor
      version: "1.0.0"
    
    - name: summarizer
      component: text_summarizer
      version: "1.0.0"
    
    - name: translator
      component: text_translator
      version: "1.0.0"
  
  flow:
    - step: extract_text
      component: extractor
      inputs:
        document: "{{ inputs.document }}"
      outputs:
        - extracted_text
    
    - step: summarize
      component: summarizer
      inputs:
        text: "{{ extracted_text }}"
      parameters:
        max_length: "{{ parameters.summary_length }}"
      outputs:
        - summary
    
    - step: translate
      component: translator
      when: "{{ parameters.target_language != 'en' }}"
      inputs:
        text: "{{ summary }}"
        target_language: "{{ parameters.target_language }}"
      outputs:
        - translated_summary
  
  interface:
    inputs:
      - name: document
        type: file
        required: true
    
    outputs:
      - name: summary
        type: string
        value: "{{ translated_summary | default(summary) }}"
    
    parameters:
      - name: summary_length
        type: integer
        default: 100
      - name: target_language
        type: string
        default: "en"

Template Components

Parameterized components that generate other components based on configuration.

component:
  name: api_client_template
  type: template
  
  template_parameters:
    - name: api_name
      type: string
      required: true
    - name: base_url
      type: string
      required: true
    - name: auth_type
      type: string
      enum: ["api_key", "oauth2", "basic"]
    - name: endpoints
      type: array
      items:
        type: object
        properties:
          name: string
          method: string
          path: string
  
  generates:
    component:
      name: "{{ api_name }}_client"
      type: composite
      
      components:
        - name: auth_handler
          component: "{{ auth_type }}_authenticator"
          version: "1.0.0"
        
        {{ #each endpoints }}
        - name: "{{ name }}_caller"
          component: http_request
          version: "1.0.0"
        {{ /each }}
      
      flow:
        - step: authenticate
          component: auth_handler
          inputs:
            credentials: "{{ inputs.credentials }}"
          outputs:
            - auth_token
        
        {{ #each endpoints }}
        - step: "call_{{ name }}"
          component: "{{ name }}_caller"
          when: "{{ inputs.operation == '{{ name }}' }}"
          inputs:
            url: "{{ base_url }}{{ path }}"
            method: "{{ method }}"
            headers:
              Authorization: "Bearer {{ auth_token }}"
            body: "{{ inputs.request_body }}"
          outputs:
            - "{{ name }}_response"
        {{ /each }}

3. Composition Patterns

Sequential Composition

Components execute in order, with outputs flowing to subsequent inputs.

pattern: sequential
components:
  - data_fetcher
  - data_validator  
  - data_transformer
  - data_loader

flow:
  type: sequential
  error_handling: stop_on_error
  data_passing: automatic

Parallel Composition

Components execute simultaneously for performance optimization.

pattern: parallel
components:
  - user_data_fetcher
  - product_data_fetcher
  - inventory_checker
  - pricing_calculator

flow:
  type: parallel
  merge_strategy: combine_outputs
  timeout: 30s
  partial_results: allowed

Conditional Composition

Components execute based on runtime conditions.

pattern: conditional
components:
  - condition_evaluator
  - path_a_processor
  - path_b_processor
  - result_merger

flow:
  type: conditional
  decision_points:
    - after: condition_evaluator
      paths:
        - condition: "{{ result.score > 0.8 }}"
          component: path_a_processor
        - condition: "{{ result.score <= 0.8 }}"
          component: path_b_processor

Loop Composition

Components execute repeatedly until conditions are met.

pattern: loop
components:
  - data_fetcher
  - data_processor
  - completion_checker

flow:
  type: loop
  max_iterations: 10
  continue_condition: "{{ not completion_checker.is_complete }}"
  accumulate_results: true

Map-Reduce Composition

Process collections through parallel mapping and result reduction.

pattern: map_reduce
components:
  - item_processor
  - result_aggregator

flow:
  type: map_reduce
  map:
    component: item_processor
    parallelism: 10
    batch_size: 100
  reduce:
    component: result_aggregator
    strategy: incremental

Pipeline Inheritance

1. Base Pipeline Definition

pipeline:
  name: base_analysis_pipeline
  version: "1.0.0"
  abstract: true
  
  parameters:
    - name: analysis_depth
      type: string
      enum: ["shallow", "standard", "deep"]
      default: "standard"
  
  components:
    - name: data_collector
      component: generic_collector
      abstract: true
    
    - name: analyzer
      component: generic_analyzer
      abstract: true
    
    - name: reporter
      component: generic_reporter
      version: "1.0.0"
  
  flow:
    - collect_data:
        component: data_collector
    - analyze:
        component: analyzer
        inputs:
          data: "{{ collect_data.output }}"
    - report:
        component: reporter
        inputs:
          analysis: "{{ analyze.output }}"

2. Derived Pipeline

pipeline:
  name: security_analysis_pipeline
  version: "1.0.0"
  extends: base_analysis_pipeline
  
  parameters:
    - name: severity_threshold
      type: string
      default: "medium"
    # Inherits analysis_depth from base
  
  components:
    - name: data_collector
      component: security_scanner
      version: "2.0.0"
      override: true
    
    - name: analyzer
      component: vulnerability_analyzer
      version: "1.5.0"
      override: true
    
    - name: threat_modeler
      component: threat_model_generator
      version: "1.0.0"
      # New component not in base
  
  flow:
    # Inherits collect_data and analyze steps
    - threat_model:
        component: threat_modeler
        inputs:
          vulnerabilities: "{{ analyze.output }}"
        after: analyze
    # Inherits report step with modified input
    - report:
        inputs:
          analysis: "{{ analyze.output }}"
          threat_model: "{{ threat_model.output }}"

Dynamic Pipeline Assembly

1. Runtime Composition

assembly:
  name: dynamic_pipeline_builder
  type: runtime
  
  selection_rules:
    - condition: "{{ context.data_type == 'structured' }}"
      components:
        processor: structured_data_processor
        validator: schema_validator
    
    - condition: "{{ context.data_type == 'unstructured' }}"
      components:
        processor: nlp_processor
        validator: content_validator
  
  assembly_strategy:
    type: rule_based
    fallback: default_pipeline
    optimization: performance
  
  runtime_parameters:
    - name: context
      type: object
      required: true
    - name: requirements
      type: object
      required: true

2. Adaptive Composition

adaptive_pipeline:
  name: self_optimizing_pipeline
  type: adaptive
  
  performance_metrics:
    - execution_time
    - resource_usage
    - output_quality
    - error_rate
  
  adaptation_strategies:
    - name: component_replacement
      trigger:
        metric: execution_time
        threshold: "150% of baseline"
      action:
        type: replace_component
        selection_criteria: faster_alternative
    
    - name: parallelization
      trigger:
        metric: queue_length
        threshold: 100
      action:
        type: increase_parallelism
        max_workers: 10
    
    - name: quality_adjustment
      trigger:
        metric: error_rate
        threshold: 0.05
      action:
        type: adjust_parameters
        target: quality_settings
        direction: increase

Component Registry

1. Registry Structure

registry:
  name: pipeline_component_registry
  version: "2.0.0"
  
  categories:
    - name: data_processing
      subcategories:
        - extraction
        - transformation
        - validation
        - loading
    
    - name: ai_ml
      subcategories:
        - nlp
        - computer_vision
        - predictive
        - generative
    
    - name: integration
      subcategories:
        - apis
        - databases
        - messaging
        - files
  
  component_metadata:
    required_fields:
      - name
      - version
      - type
      - category
      - interface
      - description
    
    optional_fields:
      - examples
      - benchmarks
      - compatibility
      - deprecation
  
  versioning:
    scheme: semantic
    compatibility_rules:
      major: breaking_changes
      minor: new_features
      patch: bug_fixes

2. Component Discovery

discovery:
  search_capabilities:
    - name: keyword_search
      fields: ["name", "description", "tags"]
      ranking: relevance
    
    - name: interface_matching
      criteria:
        - input_compatibility
        - output_compatibility
        - parameter_alignment
    
    - name: capability_search
      taxonomy: capability_tree
      similarity: semantic
  
  recommendation_engine:
    algorithms:
      - collaborative_filtering
      - content_based
      - hybrid_approach
    
    factors:
      - usage_patterns
      - performance_metrics
      - user_ratings
      - compatibility_score

Composition Validation

1. Static Validation

validation:
  static_checks:
    - name: interface_compatibility
      rules:
        - output_to_input_matching
        - type_compatibility
        - required_field_presence
        - cardinality_matching
    
    - name: resource_analysis
      checks:
        - total_resource_requirements
        - resource_conflicts
        - scaling_limitations
    
    - name: dependency_resolution
      checks:
        - circular_dependencies
        - version_conflicts
        - missing_dependencies
        - provider_availability

2. Runtime Validation

validation:
  runtime_checks:
    - name: data_flow_validation
      monitors:
        - data_schema_compliance
        - data_volume_thresholds
        - data_quality_metrics
    
    - name: performance_validation
      monitors:
        - execution_time_limits
        - memory_usage_bounds
        - throughput_requirements
    
    - name: error_rate_monitoring
      thresholds:
        - component_error_rate: 0.01
        - pipeline_error_rate: 0.001
        - recovery_time: 60s

Advanced Features

1. Component Versioning and Migration

versioning:
  strategy: semantic_versioning
  
  migration_support:
    - name: automated_migration
      conditions:
        - minor_version_change
        - backward_compatible
      actions:
        - update_references
        - validate_compatibility
        - test_migration
    
    - name: guided_migration
      conditions:
        - major_version_change
        - breaking_changes
      actions:
        - generate_migration_guide
        - identify_affected_pipelines
        - provide_code_modifications

2. Component Optimization

optimization:
  strategies:
    - name: performance_profiling
      metrics:
        - execution_time
        - memory_usage
        - cpu_utilization
      actions:
        - identify_bottlenecks
        - suggest_alternatives
        - auto_tune_parameters
    
    - name: cost_optimization
      factors:
        - resource_usage
        - api_calls
        - data_transfer
      actions:
        - recommend_efficient_components
        - batch_operation_suggestions
        - caching_opportunities

3. Composition Analytics

analytics:
  usage_tracking:
    - component_popularity
    - composition_patterns
    - failure_patterns
    - performance_trends
  
  insights_generation:
    - common_component_combinations
    - anti_patterns_detection
    - optimization_opportunities
    - upgrade_recommendations
  
  reporting:
    - pipeline_health_scores
    - component_reliability_metrics
    - composition_complexity_analysis
    - cost_benefit_analysis

Implementation Guidelines

1. Component Development

development_guidelines:
  design_principles:
    - single_responsibility
    - explicit_interfaces
    - minimal_dependencies
    - comprehensive_documentation
  
  testing_requirements:
    - unit_tests: 90% coverage
    - integration_tests: required
    - performance_tests: baseline_established
    - example_usage: provided
  
  documentation_standards:
    - interface_specification
    - usage_examples
    - performance_characteristics
    - troubleshooting_guide

2. Pipeline Composition Best Practices

best_practices:
  composition_patterns:
    - prefer_simple_over_complex
    - use_proven_components
    - implement_error_handling
    - monitor_performance
  
  anti_patterns:
    - avoid_deep_nesting
    - prevent_circular_dependencies
    - minimize_state_sharing
    - reduce_coupling
  
  optimization_tips:
    - leverage_parallelism
    - implement_caching
    - batch_operations
    - progressive_processing

Future Enhancements

1. AI-Assisted Composition

  • Automatic pipeline generation from requirements
  • Intelligent component recommendation
  • Performance prediction
  • Anomaly detection in compositions

2. Visual Composition Tools

  • Drag-and-drop pipeline builder
  • Real-time validation feedback
  • Visual debugging capabilities
  • Performance visualization

3. Distributed Composition

  • Cross-region component execution
  • Federated component registries
  • Edge computing support
  • Hybrid cloud compositions