← Back to Specifications

10 prompt engineering framework

Documentation for 10_prompt_engineering_framework from the Pipeline ex repository.

Prompt Engineering Framework Specification

Overview

The Prompt Engineering Framework provides a comprehensive system for designing, testing, optimizing, and managing prompts across various AI models and use cases. This framework enables systematic prompt development with version control, A/B testing, performance tracking, and automated optimization.

Core Concepts

1. Prompt Architecture

Prompt Components

prompt_structure:
  system_prompt:
    purpose: "Defines the AI's role, capabilities, and constraints"
    elements:
      - role_definition
      - capability_boundaries
      - output_format_specs
      - behavioral_guidelines
  
  context_injection:
    purpose: "Provides relevant background information"
    elements:
      - domain_knowledge
      - examples
      - reference_data
      - state_information
  
  task_instruction:
    purpose: "Specifies what the AI should accomplish"
    elements:
      - clear_objective
      - success_criteria
      - constraints
      - step_by_step_guidance
  
  output_shaping:
    purpose: "Controls the format and style of responses"
    elements:
      - format_templates
      - style_guidelines
      - length_constraints
      - structure_requirements

2. Prompt Types

Base Prompt Types

prompt_types:
  zero_shot:
    description: "Direct instruction without examples"
    use_cases:
      - simple_tasks
      - general_knowledge
      - creative_generation
    
  few_shot:
    description: "Instruction with examples"
    use_cases:
      - pattern_learning
      - format_compliance
      - style_matching
    
  chain_of_thought:
    description: "Step-by-step reasoning prompts"
    use_cases:
      - complex_reasoning
      - mathematical_problems
      - analytical_tasks
    
  role_based:
    description: "AI assumes specific persona or expertise"
    use_cases:
      - domain_expertise
      - creative_writing
      - professional_advice
    
  template_based:
    description: "Structured templates with variables"
    use_cases:
      - repetitive_tasks
      - data_processing
      - report_generation

Prompt Templates

1. Template Definition System

template:
  name: analysis_report_template
  version: "2.0.0"
  type: template_based
  description: "Comprehensive analysis report generation"
  
  metadata:
    author: "prompt_engineering_team"
    tags: ["analysis", "reporting", "structured"]
    performance_score: 0.92
    usage_count: 15420
  
  variables:
    - name: subject
      type: string
      required: true
      description: "Subject of analysis"
      validation:
        min_length: 3
        max_length: 100
    
    - name: data_points
      type: array
      required: true
      description: "Data to analyze"
      validation:
        min_items: 1
        max_items: 50
    
    - name: analysis_depth
      type: string
      enum: ["surface", "standard", "deep", "comprehensive"]
      default: "standard"
    
    - name: target_audience
      type: string
      enum: ["technical", "executive", "general"]
      default: "general"
  
  template_structure:
    system: |
      You are an expert analyst specializing in {{ subject }} analysis.
      Your role is to provide {{ analysis_depth }} insights that are 
      appropriate for a {{ target_audience }} audience.
      
      Guidelines:
      - Be objective and data-driven
      - Support conclusions with evidence
      - Highlight key patterns and anomalies
      - Provide actionable recommendations
    
    user: |
      Analyze the following {{ subject }} data and provide a comprehensive report:
      
      Data Points:
      {{ data_points | format_as_list }}
      
      Please structure your analysis as follows:
      1. Executive Summary (2-3 sentences)
      2. Key Findings (3-5 bullet points)
      3. Detailed Analysis
      4. Trends and Patterns
      5. Recommendations
      6. Potential Risks or Concerns
      
      Tailor the language and technical depth for a {{ target_audience }} audience.
  
  post_processing:
    - type: format_validation
      rules:
        - has_all_sections
        - section_length_limits
    - type: quality_check
      criteria:
        - clarity_score
        - completeness_score
        - actionability_score

2. Dynamic Template Generation

dynamic_template:
  name: adaptive_prompt_generator
  type: dynamic
  
  generation_rules:
    - condition: "task_complexity == 'high'"
      modifications:
        - add_chain_of_thought
        - increase_example_count
        - add_verification_step
    
    - condition: "model == 'gpt-4' and token_budget > 2000"
      modifications:
        - use_detailed_instructions
        - add_reasoning_framework
    
    - condition: "output_format == 'structured'"
      modifications:
        - add_json_schema
        - include_format_examples
        - add_validation_rules
  
  optimization_feedback:
    - success_rate
    - completion_time
    - token_efficiency
    - output_quality_score

Prompt Optimization

1. A/B Testing Framework

ab_testing:
  test_configuration:
    name: "report_generation_optimization"
    hypothesis: "Adding step-by-step reasoning improves accuracy"
    
    variants:
      control:
        prompt_template: "standard_report_template"
        description: "Current production prompt"
      
      variant_a:
        prompt_template: "report_with_reasoning_template"
        description: "Added chain-of-thought reasoning"
        modifications:
          - add_reasoning_section
          - include_thinking_process
      
      variant_b:
        prompt_template: "report_with_examples_template"
        description: "Added relevant examples"
        modifications:
          - add_3_examples
          - include_counter_examples
    
    test_parameters:
      sample_size: 1000
      distribution:
        control: 0.5
        variant_a: 0.25
        variant_b: 0.25
      
      duration: "7 days"
      
      success_metrics:
        primary:
          - accuracy_score
          - user_satisfaction
        secondary:
          - completion_time
          - token_usage
          - error_rate
    
    statistical_analysis:
      confidence_level: 0.95
      minimum_detectable_effect: 0.05
      early_stopping_rules:
        - significant_degradation
        - clear_winner

2. Automated Optimization

automated_optimization:
  optimizer_config:
    name: "prompt_evolution_engine"
    type: "genetic_algorithm"
    
    optimization_targets:
      - metric: accuracy
        weight: 0.4
        threshold: 0.9
      - metric: token_efficiency
        weight: 0.3
        direction: minimize
      - metric: latency
        weight: 0.2
        threshold: 2000ms
      - metric: consistency
        weight: 0.1
        threshold: 0.85
    
    evolution_parameters:
      population_size: 50
      generations: 20
      mutation_rate: 0.1
      crossover_rate: 0.7
      selection_method: "tournament"
    
    mutation_operators:
      - type: instruction_rephrasing
        probability: 0.3
        methods:
          - synonym_replacement
          - sentence_restructuring
          - detail_adjustment
      
      - type: example_modification
        probability: 0.2
        methods:
          - example_replacement
          - example_addition
          - example_removal
      
      - type: structure_alteration
        probability: 0.2
        methods:
          - section_reordering
          - section_merging
          - section_splitting
      
      - type: context_tuning
        probability: 0.3
        methods:
          - context_expansion
          - context_compression
          - context_clarification
    
    fitness_evaluation:
      test_set_size: 100
      evaluation_runs: 3
      aggregation_method: "weighted_average"
    
    convergence_criteria:
      - no_improvement_generations: 5
      - target_fitness_achieved: 0.95
      - maximum_generations: 20

3. Prompt Compression

compression_strategy:
  name: "intelligent_prompt_compression"
  
  compression_techniques:
    - name: redundancy_removal
      description: "Remove duplicate instructions or context"
      average_reduction: "15-20%"
      quality_impact: "minimal"
    
    - name: instruction_consolidation
      description: "Combine related instructions"
      average_reduction: "10-15%"
      quality_impact: "minimal"
    
    - name: example_optimization
      description: "Use most representative examples"
      average_reduction: "20-30%"
      quality_impact: "low"
    
    - name: context_summarization
      description: "Summarize verbose context"
      average_reduction: "30-40%"
      quality_impact: "medium"
  
  compression_pipeline:
    - step: analyze_prompt_structure
      identifies:
        - redundant_sections
        - verbose_instructions
        - unnecessary_examples
    
    - step: apply_compression
      methods:
        - semantic_deduplication
        - instruction_merging
        - example_selection
        - context_distillation
    
    - step: quality_validation
      checks:
        - semantic_preservation
        - instruction_completeness
        - performance_maintenance
    
    - step: iterative_refinement
      process:
        - test_compressed_version
        - measure_performance_delta
        - adjust_compression_level

Prompt Library Management

1. Version Control System

version_control:
  repository_structure:
    prompts/
      production/
        - current_version.yaml
        - metadata.json
      staging/
        - candidate_versions/
        - test_results/
      archive/
        - deprecated_versions/
        - migration_guides/
  
  versioning_scheme:
    format: "MAJOR.MINOR.PATCH"
    
    change_types:
      major:
        - structural_changes
        - breaking_modifications
        - significant_behavior_changes
      minor:
        - new_capabilities
        - performance_improvements
        - non_breaking_enhancements
      patch:
        - bug_fixes
        - typo_corrections
        - minor_adjustments
  
  change_tracking:
    required_fields:
      - change_description
      - impact_assessment
      - testing_results
      - rollback_plan
    
    approval_workflow:
      - developer_submission
      - automated_testing
      - peer_review
      - performance_validation
      - production_approval

2. Prompt Registry

prompt_registry:
  catalog_structure:
    categories:
      - name: text_generation
        subcategories:
          - creative_writing
          - technical_documentation
          - marketing_content
          - academic_writing
      
      - name: analysis
        subcategories:
          - data_analysis
          - sentiment_analysis
          - code_review
          - business_intelligence
      
      - name: conversation
        subcategories:
          - customer_support
          - tutoring
          - counseling
          - sales
      
      - name: task_automation
        subcategories:
          - data_extraction
          - summarization
          - translation
          - classification
  
  metadata_schema:
    required:
      - name
      - version
      - description
      - category
      - supported_models
      - performance_metrics
      - usage_examples
    
    optional:
      - prerequisites
      - limitations
      - best_practices
      - troubleshooting
      - related_prompts
  
  search_capabilities:
    - keyword_search
    - category_browsing
    - performance_filtering
    - model_compatibility
    - similarity_search

Prompt Performance Analytics

1. Metrics Collection

metrics_framework:
  core_metrics:
    quality_metrics:
      - accuracy_score:
          description: "Correctness of outputs"
          measurement: "human_evaluation | automated_scoring"
          range: [0, 1]
      
      - relevance_score:
          description: "Output relevance to task"
          measurement: "embedding_similarity | human_rating"
          range: [0, 1]
      
      - coherence_score:
          description: "Logical consistency"
          measurement: "nlp_analysis | human_evaluation"
          range: [0, 1]
      
      - completeness_score:
          description: "Task completion level"
          measurement: "checklist_validation | coverage_analysis"
          range: [0, 1]
    
    efficiency_metrics:
      - token_usage:
          description: "Total tokens consumed"
          measurement: "api_reported"
          optimization_target: "minimize"
      
      - response_time:
          description: "Time to generate response"
          measurement: "end_to_end_latency"
          optimization_target: "minimize"
      
      - cost_per_request:
          description: "Financial cost"
          measurement: "token_usage * price_per_token"
          optimization_target: "minimize"
    
    reliability_metrics:
      - success_rate:
          description: "Successful completions"
          measurement: "completed / total_attempts"
          range: [0, 1]
      
      - error_rate:
          description: "Failed generations"
          measurement: "errors / total_attempts"
          range: [0, 1]
      
      - consistency_score:
          description: "Output consistency"
          measurement: "variance_analysis"
          range: [0, 1]
  
  collection_pipeline:
    - stage: execution_monitoring
      collects:
        - request_parameters
        - response_data
        - timing_information
        - error_details
    
    - stage: quality_assessment
      processes:
        - automated_scoring
        - sample_human_review
        - comparative_analysis
    
    - stage: aggregation
      generates:
        - performance_reports
        - trend_analysis
        - anomaly_detection

2. Performance Dashboard

analytics_dashboard:
  real_time_monitoring:
    widgets:
      - prompt_usage_heatmap
      - error_rate_timeline
      - token_usage_gauge
      - response_time_histogram
      - quality_score_trends
  
  comparative_analysis:
    views:
      - prompt_version_comparison
      - model_performance_matrix
      - cost_efficiency_analysis
      - user_satisfaction_correlation
  
  optimization_insights:
    recommendations:
      - underperforming_prompts
      - optimization_opportunities
      - cost_reduction_suggestions
      - quality_improvement_areas
  
  alerting_rules:
    - metric: error_rate
      threshold: 0.05
      action: immediate_notification
    
    - metric: quality_score
      threshold: 0.8
      condition: "below"
      action: review_required
    
    - metric: cost_per_request
      threshold: "$0.10"
      action: cost_alert

Advanced Features

1. Multi-Model Optimization

multi_model_optimization:
  supported_models:
    - provider: openai
      models: ["gpt-4", "gpt-3.5-turbo"]
      
    - provider: anthropic
      models: ["claude-2", "claude-instant"]
      
    - provider: google
      models: ["palm-2", "gemini-pro"]
      
    - provider: open_source
      models: ["llama-2", "mistral", "falcon"]
  
  optimization_strategy:
    approach: "model_specific_tuning"
    
    techniques:
      - prompt_adaptation:
          description: "Adjust prompt for model capabilities"
          customizations:
            - instruction_style
            - example_format
            - context_structure
      
      - performance_profiling:
          description: "Profile each model's strengths"
          metrics:
            - task_accuracy
            - response_speed
            - cost_efficiency
            - capability_coverage
      
      - dynamic_routing:
          description: "Route requests to optimal model"
          factors:
            - task_complexity
            - required_capabilities
            - budget_constraints
            - latency_requirements

2. Prompt Chaining

prompt_chaining:
  chain_definition:
    name: "comprehensive_analysis_chain"
    description: "Multi-stage analysis with refinement"
    
    stages:
      - stage: initial_analysis
        prompt_template: "quick_analysis_template"
        purpose: "Generate initial insights"
        outputs:
          - preliminary_findings
          - areas_for_deep_dive
      
      - stage: deep_analysis
        prompt_template: "detailed_investigation_template"
        inputs:
          - previous_output: preliminary_findings
          - focus_areas: areas_for_deep_dive
        purpose: "Detailed investigation of key areas"
        outputs:
          - detailed_findings
          - supporting_evidence
      
      - stage: synthesis
        prompt_template: "synthesis_template"
        inputs:
          - all_findings: [preliminary_findings, detailed_findings]
          - evidence: supporting_evidence
        purpose: "Synthesize comprehensive report"
        outputs:
          - final_report
          - executive_summary
      
      - stage: quality_check
        prompt_template: "review_template"
        inputs:
          - report: final_report
        purpose: "Verify quality and completeness"
        outputs:
          - quality_score
          - improvement_suggestions
    
    error_handling:
      retry_strategy: "exponential_backoff"
      fallback_behavior: "use_previous_stage_output"
      max_retries: 3
    
    optimization:
      parallel_execution: true
      cache_intermediate_results: true
      total_timeout: 120s

3. Prompt Security

security_framework:
  injection_prevention:
    sanitization_rules:
      - remove_system_commands
      - escape_special_characters
      - validate_input_format
      - limit_input_length
    
    detection_patterns:
      - prompt_injection_attempts
      - jailbreak_patterns
      - malicious_instructions
      - data_exfiltration_attempts
  
  output_filtering:
    content_filters:
      - pii_detection:
          patterns: ["ssn", "credit_card", "email", "phone"]
          action: "redact"
      
      - inappropriate_content:
          categories: ["violence", "hate_speech", "adult_content"]
          action: "block"
      
      - confidential_information:
          patterns: ["api_keys", "passwords", "internal_data"]
          action: "remove"
  
  access_control:
    prompt_permissions:
      - role_based_access
      - usage_quotas
      - model_restrictions
      - data_access_limits
    
    audit_logging:
      - user_actions
      - prompt_modifications
      - access_attempts
      - security_violations

Testing Framework

1. Prompt Testing Suite

testing_framework:
  test_types:
    unit_tests:
      description: "Test individual prompt components"
      coverage:
        - variable_substitution
        - format_compliance
        - instruction_clarity
        - example_validity
    
    integration_tests:
      description: "Test prompt with actual models"
      coverage:
        - model_compatibility
        - response_quality
        - error_handling
        - performance_metrics
    
    regression_tests:
      description: "Ensure changes don't degrade performance"
      coverage:
        - baseline_comparison
        - quality_maintenance
        - behavior_consistency
        - edge_case_handling
    
    stress_tests:
      description: "Test under extreme conditions"
      coverage:
        - large_inputs
        - rapid_requests
        - edge_cases
        - adversarial_inputs
  
  test_data_generation:
    strategies:
      - representative_sampling
      - edge_case_generation
      - adversarial_examples
      - synthetic_data_creation
  
  quality_assurance:
    automated_checks:
      - grammar_validation
      - instruction_completeness
      - format_consistency
      - performance_benchmarks
    
    human_evaluation:
      - expert_review
      - user_testing
      - a_b_testing
      - feedback_collection

2. Continuous Improvement

continuous_improvement:
  feedback_loops:
    - user_feedback:
        collection_methods:
          - ratings
          - comments
          - usage_patterns
          - error_reports
        
        analysis:
          - sentiment_analysis
          - pattern_identification
          - priority_scoring
    
    - performance_monitoring:
        automated_tracking:
          - success_rates
          - quality_scores
          - efficiency_metrics
          - cost_analysis
        
        anomaly_detection:
          - performance_degradation
          - unusual_patterns
          - error_spikes
    
    - model_updates:
        adaptation_strategy:
          - performance_testing
          - prompt_adjustment
          - reoptimization
          - migration_planning
  
  improvement_pipeline:
    - collect_feedback
    - analyze_patterns
    - generate_hypotheses
    - design_experiments
    - implement_changes
    - measure_impact
    - deploy_improvements

Implementation Guidelines

1. Best Practices

best_practices:
  prompt_design:
    - be_specific_and_clear
    - provide_context_appropriately
    - use_consistent_formatting
    - include_relevant_examples
    - specify_output_format
    - handle_edge_cases
    - test_thoroughly
  
  optimization:
    - start_with_baseline
    - iterate_systematically
    - measure_everything
    - document_changes
    - maintain_version_history
    - automate_testing
    - monitor_production
  
  security:
    - sanitize_all_inputs
    - validate_outputs
    - implement_access_controls
    - audit_usage
    - prevent_injection
    - protect_sensitive_data
    - regular_security_reviews

2. Migration Strategy

migration_strategy:
  phases:
    - phase_1_assessment:
        tasks:
          - inventory_existing_prompts
          - evaluate_current_performance
          - identify_improvement_areas
          - prioritize_migrations
    
    - phase_2_standardization:
        tasks:
          - convert_to_templates
          - add_metadata
          - implement_versioning
          - create_test_suites
    
    - phase_3_optimization:
        tasks:
          - baseline_performance
          - run_optimization
          - validate_improvements
          - deploy_gradually
    
    - phase_4_monitoring:
        tasks:
          - setup_analytics
          - implement_alerting
          - collect_feedback
          - continuous_improvement

Future Enhancements

1. AI-Powered Prompt Generation

  • Automatic prompt creation from requirements
  • Self-improving prompt systems
  • Context-aware prompt adaptation
  • Natural language prompt programming

2. Advanced Analytics

  • Predictive performance modeling
  • Cost optimization algorithms
  • Quality prediction systems
  • Automated A/B test generation

3. Integration Ecosystem

  • IDE plugins for prompt development
  • CI/CD pipeline integration
  • Monitoring dashboard integrations
  • Collaborative prompt development tools

4. Research Applications

  • Prompt pattern mining
  • Cross-model prompt transfer
  • Prompt compression research
  • Security vulnerability research