← Back to Specifications

11 monitoring and observability

Documentation for 11_monitoring_and_observability from the Pipeline ex repository.

Monitoring and Observability Specification

Overview

The Monitoring and Observability system provides comprehensive visibility into pipeline execution, performance, and health. This specification defines the architecture for collecting, processing, analyzing, and visualizing metrics, logs, traces, and events across the entire pipeline ecosystem.

Core Principles

1. Observability Pillars

observability_pillars:
  metrics:
    definition: "Numerical measurements over time"
    examples:
      - execution_duration
      - token_usage
      - error_rates
      - resource_consumption
    characteristics:
      - aggregatable
      - time_series_based
      - low_cardinality
      - efficient_storage
  
  logs:
    definition: "Discrete events with detailed context"
    examples:
      - execution_logs
      - error_messages
      - audit_trails
      - debug_information
    characteristics:
      - high_detail
      - searchable
      - structured_format
      - contextual
  
  traces:
    definition: "Request flow through distributed systems"
    examples:
      - pipeline_execution_flow
      - component_interactions
      - dependency_chains
      - performance_bottlenecks
    characteristics:
      - distributed_context
      - causal_relationships
      - latency_analysis
      - dependency_mapping
  
  events:
    definition: "Significant state changes or occurrences"
    examples:
      - pipeline_started
      - component_failed
      - threshold_exceeded
      - configuration_changed
    characteristics:
      - point_in_time
      - business_relevant
      - actionable
      - correlatable

Architecture

1. Collection Layer

collection_layer:
  agents:
    pipeline_agent:
      type: "embedded"
      responsibilities:
        - metric_collection
        - log_forwarding
        - trace_generation
        - event_emission
      
      features:
        auto_instrumentation: true
        sampling_support: true
        buffering: true
        compression: true
      
      protocols:
        - otlp  # OpenTelemetry Protocol
        - prometheus
        - statsd
        - fluentd
    
    infrastructure_agent:
      type: "standalone"
      targets:
        - compute_resources
        - storage_systems
        - network_components
        - external_services
      
      collection_methods:
        - pull_based  # Prometheus style
        - push_based  # Telegraf style
        - streaming   # Kafka/Kinesis
  
  collection_strategies:
    metrics:
      interval: "15s"
      retention_raw: "7d"
      aggregation_levels:
        - "1m": "30d"
        - "5m": "90d"
        - "1h": "1y"
        - "1d": "5y"
    
    logs:
      sampling:
        error_logs: "100%"
        warning_logs: "100%"
        info_logs: "10%"
        debug_logs: "1%"
      
      batching:
        size: "1MB"
        timeout: "5s"
    
    traces:
      sampling_strategy:
        type: "adaptive"
        base_rate: 0.1
        error_rate: 1.0
        slow_request_rate: 1.0
        rate_limiting: 100  # per second

2. Processing Layer

processing_layer:
  stream_processing:
    engine: "apache_flink | spark_streaming"
    
    pipelines:
      metric_aggregation:
        operations:
          - deduplication
          - aggregation
          - anomaly_detection
          - threshold_checking
        
        windowing:
          - tumbling: "1m, 5m, 1h"
          - sliding: "5m/1m, 1h/5m"
          - session: "inactivity_30m"
      
      log_enrichment:
        operations:
          - parsing
          - field_extraction
          - correlation_id_injection
          - contextual_enrichment
          - pii_masking
        
        enrichment_sources:
          - service_registry
          - user_database
          - configuration_store
      
      trace_analysis:
        operations:
          - span_correlation
          - service_dependency_mapping
          - critical_path_analysis
          - error_propagation_tracking
        
        derived_metrics:
          - service_latency
          - dependency_health
          - error_rates
          - throughput
  
  data_transformation:
    schemas:
      metric_schema:
        name: string
        value: float
        timestamp: timestamp
        labels: map<string, string>
        unit: string
      
      log_schema:
        timestamp: timestamp
        level: enum
        message: string
        context: map<string, any>
        trace_id: string
        span_id: string
      
      trace_schema:
        trace_id: string
        spans: array<span>
        service_map: object
        critical_path: array<span_id>

3. Storage Layer

storage_layer:
  time_series_database:
    technology: "prometheus | influxdb | timescaledb"
    
    configuration:
      retention_policies:
        hot_storage: "7d"
        warm_storage: "30d"
        cold_storage: "1y"
      
      compaction:
        enabled: true
        levels: [2h, 1d, 1w]
      
      replication:
        factor: 3
        consistency: "quorum"
  
  log_storage:
    technology: "elasticsearch | loki | cloudwatch"
    
    configuration:
      index_strategy:
        pattern: "logs-{pipeline}-{date}"
        shards: 5
        replicas: 1
      
      lifecycle_management:
        hot_phase: "7d"
        warm_phase: "30d"
        delete_phase: "90d"
  
  trace_storage:
    technology: "jaeger | tempo | x-ray"
    
    configuration:
      sampling_storage: true
      adaptive_sampling: true
      retention: "72h"
  
  object_storage:
    technology: "s3 | gcs | azure_blob"
    
    usage:
      - long_term_archive
      - large_payload_storage
      - backup_destination
      - report_storage

Metrics Framework

1. Pipeline Metrics

pipeline_metrics:
  execution_metrics:
    pipeline_duration:
      type: histogram
      unit: milliseconds
      labels: [pipeline_name, version, environment]
      buckets: [100, 250, 500, 1000, 2500, 5000, 10000]
    
    pipeline_status:
      type: counter
      labels: [pipeline_name, status, error_type]
      states: [started, completed, failed, timeout]
    
    active_pipelines:
      type: gauge
      labels: [pipeline_name, environment]
      description: "Currently executing pipelines"
  
  component_metrics:
    component_duration:
      type: histogram
      unit: milliseconds
      labels: [component_name, component_type, pipeline_name]
      
    component_errors:
      type: counter
      labels: [component_name, error_type, severity]
      
    component_retries:
      type: counter
      labels: [component_name, retry_reason]
  
  resource_metrics:
    memory_usage:
      type: gauge
      unit: bytes
      labels: [pipeline_name, component_name]
      
    cpu_usage:
      type: gauge
      unit: percentage
      labels: [pipeline_name, component_name]
      
    io_operations:
      type: counter
      labels: [operation_type, pipeline_name]
  
  business_metrics:
    tokens_consumed:
      type: counter
      labels: [provider, model, pipeline_name]
      
    api_calls:
      type: counter
      labels: [api_name, endpoint, pipeline_name]
      
    cost_estimate:
      type: gauge
      unit: dollars
      labels: [cost_category, pipeline_name]

2. SLI/SLO Framework

sli_slo_framework:
  sli_definitions:
    availability:
      definition: "Percentage of successful pipeline executions"
      formula: "successful_executions / total_executions"
      measurement_window: "5m"
      
    latency:
      definition: "95th percentile execution time"
      formula: "histogram_quantile(0.95, pipeline_duration)"
      measurement_window: "5m"
      
    error_rate:
      definition: "Percentage of failed executions"
      formula: "failed_executions / total_executions"
      measurement_window: "5m"
      
    throughput:
      definition: "Executions per minute"
      formula: "rate(pipeline_completions[1m])"
      measurement_window: "1m"
  
  slo_definitions:
    - name: "Pipeline Availability"
      sli: availability
      target: 99.9
      window: "30d"
      budget_burn_rate_alerts:
        - rate: 2
          window: "1h"
          severity: "warning"
        - rate: 10
          window: "5m"
          severity: "critical"
    
    - name: "Pipeline Latency"
      sli: latency
      target: 
        value: 5000  # ms
        percentile: 95
      window: "30d"
    
    - name: "Error Budget"
      sli: error_rate
      target: 0.1  # 0.1%
      window: "30d"
      
  error_budget_policy:
    actions:
      budget_remaining_25:
        - reduce_deployment_velocity
        - increase_testing_requirements
      
      budget_remaining_10:
        - freeze_non_critical_changes
        - mandatory_post_mortems
      
      budget_exhausted:
        - halt_all_changes
        - incident_response_mode
        - executive_escalation

Logging Framework

1. Structured Logging

structured_logging:
  log_format:
    standard_fields:
      timestamp: iso8601
      level: enum[DEBUG, INFO, WARN, ERROR, FATAL]
      message: string
      logger: string
      thread_id: string
      
    contextual_fields:
      trace_id: string
      span_id: string
      pipeline_id: string
      component_id: string
      user_id: string
      correlation_id: string
      
    custom_fields:
      execution_stage: string
      input_hash: string
      output_hash: string
      duration_ms: number
      
  log_levels:
    DEBUG:
      description: "Detailed diagnostic information"
      retention: "24h"
      sampling: "1%"
      
    INFO:
      description: "General operational information"
      retention: "7d"
      sampling: "10%"
      
    WARN:
      description: "Warning conditions"
      retention: "30d"
      sampling: "100%"
      
    ERROR:
      description: "Error conditions"
      retention: "90d"
      sampling: "100%"
      
    FATAL:
      description: "Critical failures"
      retention: "1y"
      sampling: "100%"
  
  sensitive_data_handling:
    pii_detection:
      patterns:
        - ssn_pattern
        - credit_card_pattern
        - email_pattern
        - phone_pattern
      
      action: "mask"
      mask_character: "*"
      
    secrets_detection:
      patterns:
        - api_key_pattern
        - password_pattern
        - token_pattern
      
      action: "remove"

2. Log Aggregation

log_aggregation:
  collection_pipeline:
    sources:
      - application_logs
      - system_logs
      - audit_logs
      - security_logs
    
    processors:
      - name: parser
        type: regex | json | kv
        error_handling: "send_to_dlq"
        
      - name: enricher
        enrichments:
          - add_service_metadata
          - add_environment_info
          - add_geographic_data
          
      - name: filter
        rules:
          - drop_debug_in_production
          - drop_health_check_logs
          - sample_high_volume_logs
    
    outputs:
      primary:
        type: elasticsearch
        index_pattern: "logs-{service}-{date}"
        
      archive:
        type: s3
        format: compressed_json
        partition: "year/month/day/hour"

Tracing Framework

1. Distributed Tracing

distributed_tracing:
  instrumentation:
    automatic:
      frameworks:
        - http_clients
        - grpc_clients
        - database_drivers
        - message_queues
        - cache_clients
      
      trace_propagation:
        formats:
          - w3c_trace_context
          - b3_multi_header
          - jaeger
    
    manual:
      span_attributes:
        required:
          - service.name
          - span.kind
          - component.name
          
        recommended:
          - pipeline.id
          - pipeline.version
          - user.id
          - environment
          
        custom:
          - business_operation
          - feature_flag
          - experiment_id
  
  sampling_strategies:
    head_based:
      rules:
        - sample_all_errors
        - sample_slow_requests
        - sample_percentage: 0.1
        
    tail_based:
      decision_wait: "30s"
      rules:
        - error_traces: 1.0
        - latency_threshold: 
            threshold_ms: 1000
            sample_rate: 1.0
        - default: 0.1
  
  trace_analysis:
    service_maps:
      generation: "automatic"
      update_interval: "1m"
      edge_metrics:
        - request_rate
        - error_rate
        - latency_p50_p95_p99
    
    critical_path_analysis:
      identify:
        - bottlenecks
        - redundant_calls
        - n_plus_one_queries
        - synchronous_chains

2. Trace Correlation

trace_correlation:
  correlation_strategies:
    log_trace_correlation:
      method: "inject_trace_context"
      fields:
        - trace_id
        - span_id
        - trace_flags
    
    metric_trace_correlation:
      method: "exemplars"
      sampling_rate: 0.1
      
    event_trace_correlation:
      method: "event_attributes"
      required_fields:
        - trace_id
        - timestamp
        - event_type
  
  correlation_queries:
    logs_for_trace:
      query: "trace_id:{trace_id}"
      time_window: "trace_duration + 1m"
      
    metrics_for_trace:
      query: "exemplar_trace_id:{trace_id}"
      aggregation: "by_span"
      
    events_for_trace:
      query: "attributes.trace_id:{trace_id}"
      order: "timestamp"

Alerting Framework

1. Alert Configuration

alerting_framework:
  alert_rules:
    - name: "High Error Rate"
      condition: |
        rate(pipeline_errors[5m]) / rate(pipeline_total[5m]) > 0.05
      duration: "5m"
      severity: "critical"
      
      annotations:
        summary: "Pipeline error rate exceeds 5%"
        description: "Pipeline {{ $labels.pipeline_name }} has error rate of {{ $value }}%"
        runbook_url: "https://runbooks.io/pipeline-errors"
      
      actions:
        - notify_oncall
        - create_incident
        - scale_down_traffic
    
    - name: "SLO Burn Rate"
      condition: |
        slo_burn_rate > 10 AND slo_time_window = "5m"
      severity: "critical"
      
      annotations:
        summary: "SLO budget burning too fast"
        impact: "User-facing service degradation"
      
      actions:
        - page_oncall
        - trigger_rollback
        - notify_stakeholders
  
  notification_channels:
    pagerduty:
      integration_key: "${PAGERDUTY_KEY}"
      routing:
        critical: "immediate_page"
        warning: "low_priority"
      
    slack:
      webhook_url: "${SLACK_WEBHOOK}"
      channels:
        critical: "#incidents"
        warning: "#alerts"
        info: "#monitoring"
      
      message_template: |
        :warning: *{{ .Alert.Name }}*
        Severity: {{ .Alert.Severity }}
        Pipeline: {{ .Labels.pipeline_name }}
        Description: {{ .Alert.Description }}
        [View Dashboard]({{ .DashboardURL }})
    
    email:
      smtp_config:
        server: "smtp.example.com"
        port: 587
        
      recipients:
        critical: ["[email protected]", "[email protected]"]
        warning: ["[email protected]"]
  
  alert_routing:
    rules:
      - match:
          severity: "critical"
          environment: "production"
        receivers: ["pagerduty", "slack-critical"]
        
      - match:
          severity: "warning"
        receivers: ["slack-warning", "email"]
        
      - match:
          team: "data-pipeline"
        receivers: ["slack-data-team"]
  
  alert_suppression:
    maintenance_windows:
      - name: "Weekly Maintenance"
        schedule: "0 2 * * 0"  # Sunday 2 AM
        duration: "2h"
        
    deduplication:
      group_by: ["pipeline_name", "error_type"]
      interval: "5m"
      
    throttling:
      max_alerts_per_hour: 50
      max_alerts_per_severity:
        critical: 10
        warning: 20
        info: 100

2. Incident Management

incident_management:
  incident_lifecycle:
    detection:
      sources:
        - automated_alerts
        - manual_reports
        - anomaly_detection
        
    triage:
      severity_matrix:
        critical:
          user_impact: "total_outage"
          revenue_impact: ">$10k/hour"
          
        major:
          user_impact: "partial_outage"
          revenue_impact: ">$1k/hour"
          
        minor:
          user_impact: "degraded_performance"
          revenue_impact: "<$1k/hour"
    
    response:
      roles:
        incident_commander:
          responsibilities:
            - coordinate_response
            - make_decisions
            - external_communication
            
        technical_lead:
          responsibilities:
            - investigate_issue
            - implement_fixes
            - coordinate_engineers
            
        communications_lead:
          responsibilities:
            - stakeholder_updates
            - status_page_updates
            - post_mortem_scheduling
    
    resolution:
      steps:
        - identify_root_cause
        - implement_fix
        - verify_resolution
        - monitor_stability
        
    post_incident:
      timeline: 
        post_mortem_draft: "24h"
        post_mortem_meeting: "48h"
        action_items_due: "2w"
        
      post_mortem_template:
        - incident_summary
        - timeline
        - root_cause_analysis
        - impact_assessment
        - what_went_well
        - what_went_wrong
        - action_items

Visualization and Dashboards

1. Dashboard Architecture

dashboard_architecture:
  dashboard_types:
    executive_dashboard:
      purpose: "High-level business metrics"
      refresh_rate: "5m"
      
      widgets:
        - slo_status_grid
        - cost_trends
        - usage_statistics
        - incident_summary
        
    operational_dashboard:
      purpose: "Real-time system health"
      refresh_rate: "15s"
      
      widgets:
        - pipeline_status_map
        - error_rate_trends
        - latency_heatmap
        - resource_utilization
        
    investigation_dashboard:
      purpose: "Deep dive analysis"
      refresh_rate: "on_demand"
      
      widgets:
        - log_search
        - trace_explorer
        - metric_correlations
        - time_comparisons
    
    team_dashboards:
      purpose: "Team-specific metrics"
      customizable: true
      
      templates:
        - pipeline_development_team
        - infrastructure_team
        - data_science_team
        - business_analytics_team
  
  visualization_types:
    time_series:
      use_cases:
        - metric_trends
        - rate_calculations
        - predictions
      
      features:
        - multi_axis
        - annotations
        - threshold_lines
        - anomaly_highlighting
    
    heatmaps:
      use_cases:
        - latency_distribution
        - error_patterns
        - usage_patterns
      
      features:
        - time_buckets
        - value_buckets
        - drill_down
        - tooltips
    
    topology_maps:
      use_cases:
        - service_dependencies
        - pipeline_flow
        - error_propagation
      
      features:
        - auto_layout
        - edge_metrics
        - node_health
        - filtering

2. Reporting Framework

reporting_framework:
  scheduled_reports:
    daily_summary:
      schedule: "0 9 * * *"
      recipients: ["[email protected]"]
      
      content:
        - pipeline_execution_summary
        - error_summary
        - cost_summary
        - slo_status
        
    weekly_analytics:
      schedule: "0 9 * * 1"
      recipients: ["[email protected]"]
      
      content:
        - trend_analysis
        - capacity_planning
        - incident_summary
        - improvement_recommendations
        
    monthly_executive:
      schedule: "0 9 1 * *"
      recipients: ["[email protected]"]
      
      content:
        - business_metrics
        - cost_analysis
        - reliability_metrics
        - strategic_insights
  
  ad_hoc_reports:
    incident_report:
      triggers:
        - incident_resolved
        - post_mortem_completed
        
      content:
        - incident_timeline
        - impact_analysis
        - root_cause
        - remediation_steps
        - prevention_measures
    
    performance_report:
      parameters:
        - time_range
        - pipeline_filter
        - metric_selection
        
      content:
        - performance_trends
        - bottleneck_analysis
        - optimization_opportunities
        - benchmark_comparisons
  
  report_formats:
    email:
      template: "html"
      attachments:
        - pdf_summary
        - csv_data
        
    slack:
      format: "markdown"
      interactive: true
      
    dashboard:
      format: "embedded"
      sharing: "link_with_auth"

Cost Monitoring

1. Cost Attribution

cost_attribution:
  cost_dimensions:
    infrastructure:
      compute:
        metrics:
          - cpu_hours
          - memory_gb_hours
          - gpu_hours
        
        attribution:
          - pipeline_id
          - component_id
          - team_id
          - project_id
      
      storage:
        metrics:
          - storage_gb_hours
          - io_operations
          - bandwidth_gb
        
        attribution:
          - data_type
          - retention_class
          - access_pattern
      
      network:
        metrics:
          - data_transfer_gb
          - api_calls
          - load_balancer_hours
        
        attribution:
          - source_region
          - destination_region
          - service_type
    
    external_services:
      ai_providers:
        metrics:
          - tokens_consumed
          - api_calls
          - model_type
        
        attribution:
          - provider
          - model
          - pipeline_id
          - use_case
      
      data_services:
        metrics:
          - queries_executed
          - data_scanned_gb
          - compute_units
        
        attribution:
          - service_type
          - query_complexity
          - user_id
  
  cost_optimization:
    recommendations:
      - underutilized_resources
      - oversized_instances
      - inefficient_queries
      - unnecessary_api_calls
      - data_retention_optimization
    
    automated_actions:
      - scale_down_idle_resources
      - switch_to_spot_instances
      - archive_old_data
      - cache_expensive_operations

Integration Ecosystem

1. Data Export

data_export:
  export_formats:
    prometheus:
      endpoint: "/metrics"
      format: "prometheus_text"
      
    opentelemetry:
      protocol: "otlp"
      formats:
        - grpc
        - http/protobuf
        - http/json
      
    custom_webhooks:
      format: "json"
      batching: true
      compression: true
  
  export_destinations:
    monitoring_platforms:
      - datadog
      - new_relic
      - grafana_cloud
      - elastic_cloud
      
    data_lakes:
      - s3
      - bigquery
      - snowflake
      - databricks
      
    streaming_platforms:
      - kafka
      - kinesis
      - pubsub
      - event_hubs

2. API Access

api_access:
  query_api:
    endpoints:
      metrics:
        path: "/api/v1/metrics/query"
        methods: ["GET", "POST"]
        
      logs:
        path: "/api/v1/logs/search"
        methods: ["POST"]
        
      traces:
        path: "/api/v1/traces/{trace_id}"
        methods: ["GET"]
    
    authentication:
      methods:
        - api_key
        - oauth2
        - mutual_tls
    
    rate_limiting:
      default: "100/minute"
      by_tier:
        free: "10/minute"
        standard: "100/minute"
        enterprise: "1000/minute"
  
  webhook_api:
    event_types:
      - alert_triggered
      - alert_resolved
      - slo_breach
      - incident_created
      - cost_threshold_exceeded
    
    delivery:
      retry_policy:
        max_attempts: 3
        backoff: "exponential"
        
      security:
        - signature_verification
        - ip_allowlist
        - tls_required

Performance Optimization

1. Data Pipeline Optimization

optimization_strategies:
  data_reduction:
    sampling:
      adaptive_sampling:
        - high_value_retention: 100%
        - normal_sampling: 10%
        - verbose_sampling: 1%
      
    aggregation:
      pre_aggregation:
        - service_level_metrics
        - component_summaries
        - time_based_rollups
      
    compression:
      algorithms:
        - zstd
        - snappy
        - gzip
      
      compression_levels:
        hot_data: "fast"
        warm_data: "balanced"
        cold_data: "maximum"
  
  query_optimization:
    indexing_strategy:
      primary_indexes:
        - timestamp
        - pipeline_id
        - trace_id
        
      secondary_indexes:
        - user_id
        - error_type
        - component_name
      
    caching:
      levels:
        - memory_cache: "1GB"
        - redis_cache: "10GB"
        - cdn_cache: "100GB"
      
      cache_keys:
        - query_hash
        - time_range
        - filters
    
    query_planning:
      - partition_pruning
      - predicate_pushdown
      - join_optimization
      - parallel_execution

Security and Compliance

1. Data Security

data_security:
  encryption:
    at_rest:
      algorithm: "AES-256-GCM"
      key_management: "KMS"
      key_rotation: "90d"
      
    in_transit:
      protocol: "TLS 1.3"
      cipher_suites:
        - TLS_AES_256_GCM_SHA384
        - TLS_CHACHA20_POLY1305_SHA256
      
  access_control:
    rbac:
      roles:
        - viewer: "read_only"
        - operator: "read_write_metrics"
        - admin: "full_access"
      
    attribute_based:
      attributes:
        - team_membership
        - data_classification
        - environment_access
    
    audit_logging:
      events:
        - access_granted
        - access_denied
        - configuration_changed
        - data_exported
  
  compliance:
    frameworks:
      - gdpr:
          pii_handling: "anonymization"
          retention_limits: true
          right_to_erasure: true
          
      - hipaa:
          encryption_required: true
          access_logging: true
          data_integrity: true
          
      - sox:
          audit_trail: true
          change_control: true
          separation_of_duties: true

Disaster Recovery

1. Backup and Recovery

disaster_recovery:
  backup_strategy:
    frequency:
      metrics: "continuous"
      logs: "hourly"
      configuration: "on_change"
      
    retention:
      daily: "7d"
      weekly: "4w"
      monthly: "12m"
      yearly: "7y"
    
    verification:
      automated_restore_test: "weekly"
      checksum_validation: "daily"
      
  recovery_procedures:
    rto_targets:  # Recovery Time Objective
      critical_metrics: "15m"
      recent_logs: "1h"
      historical_data: "4h"
      
    rpo_targets:  # Recovery Point Objective
      metrics: "1m"
      logs: "5m"
      traces: "5m"
    
    failover:
      automatic_triggers:
        - region_failure
        - availability_zone_failure
        - service_degradation
      
      manual_procedures:
        - verification_steps
        - failover_commands
        - validation_checks
        - rollback_plan

Future Enhancements

1. AI-Powered Operations

  • Anomaly detection using machine learning
  • Predictive alerting
  • Automated root cause analysis
  • Intelligent capacity planning

2. Advanced Analytics

  • Pipeline performance predictions
  • Cost optimization recommendations
  • User behavior analytics
  • Business impact correlation

3. Enhanced Visualization

  • 3D service topology maps
  • AR/VR monitoring dashboards
  • Real-time collaboration features
  • Mobile-first monitoring apps

4. Automation Extensions

  • Self-healing pipelines
  • Automated incident response
  • Dynamic resource allocation
  • Proactive optimization