← Back to Infrastructure

Json yaml bridge implementation

Documentation for json_yaml_bridge_implementation from the Pipeline ex repository.

JSON/YAML Bridge Implementation Prompt

Context Recontextualization

You are working on the pipeline_ex system, an Elixir-based pipeline generator that needs a robust JSON/YAML bridge system for seamless format conversion with type preservation.

Current System State

  • YAML processing: Uses YamlElixir.read_from_string/1 in lib/pipeline/config.ex for basic YAML loading
  • JSON processing: Uses Jason.encode/2 and Jason.decode/1 in lib/pipeline/result_manager.ex for serialization
  • Key conversion: Manual atom/string conversion with atomize_keys/1 function
  • Type handling: No type preservation across format boundaries
  • Validation: Separate validation after parsing, no schema-aware conversion

Current Problems

  1. Type loss during conversion - YAML numbers become strings in JSON
  2. No bidirectional support - Can’t reliably convert JSON back to YAML
  3. Limited schema integration - No validation during conversion
  4. Manual key handling - Requires explicit atom/string conversion
  5. DSPy incompatibility - No support for DSPy signature schemas

DSPy Integration Requirements

  • Signature conversion - Convert DSPy YAML signatures to JSON format
  • Type preservation - Maintain exact data types through conversion
  • Schema validation - Validate during conversion process
  • Structured output - Handle complex nested structures
  • Bidirectional conversion - Support both YAML→JSON and JSON→YAML

Task

Implement a comprehensive JSON/YAML bridge system that enables seamless conversion between formats while preserving data types and supporting DSPy integration.

Required Components

  1. Core Bridge Module (lib/pipeline/bridge/json_yaml_bridge.ex)

    • Bidirectional conversion with type preservation
    • Schema-aware conversion and validation
    • Configurable conversion options
    • Error handling with detailed context
  2. Type Preservation System (lib/pipeline/bridge/type_preserver.ex)

    • Extract and maintain type metadata
    • Support for complex nested structures
    • Schema-based type inference
    • Type coercion rules and validation
  3. Format Handlers (lib/pipeline/bridge/format_handlers.ex)

    • Specialized YAML handler with type normalization
    • Enhanced JSON handler with type preservation
    • Custom type conversion rules
    • Format-specific optimization
  4. DSPy Support Module (lib/pipeline/bridge/dspy_support.ex)

    • DSPy signature conversion
    • Signature schema validation
    • Type metadata extraction for DSPy
    • DSPy-specific conversion rules
  5. Configuration Integration (lib/pipeline/bridge/config_integration.ex)

    • Integration with existing config system
    • Schema-aware config loading
    • Backward compatibility layer
    • Performance optimization

Implementation Requirements

  • Preserve existing functionality - All current YAML/JSON processing must continue working
  • Type safety - Maintain data types across all conversions
  • Schema validation - Validate data during conversion process
  • Error handling - Comprehensive error reporting with context
  • Performance - Efficient conversion with caching support
  • Extensibility - Support for custom type handlers and rules

Conversion Examples

The bridge must handle conversions like:

# YAML Input
workflow:
  timeout: 30          # integer
  enabled: true        # boolean
  created_at: 2024-01-01T00:00:00Z  # datetime
  scores: [85, 92, 78] # array of integers
// JSON Output (with type preservation)
{
  "workflow": {
    "timeout": 30,
    "enabled": true,
    "created_at": "2024-01-01T00:00:00Z",
    "scores": [85, 92, 78]
  }
}

DSPy Signature Support

Must support DSPy signature conversion:

# DSPy YAML Signature
signature:
  input_fields:
    - name: code
      type: string
      description: "Source code"
  output_fields:
    - name: analysis
      type: object
      description: "Analysis results"

Integration Points

  • Configuration system - Enhance existing config loading
  • Result manager - Improve serialization/deserialization
  • Step execution - Support type-aware step result handling
  • Schema validator - Integrate with enhanced validation system

Code Style Requirements

  • Follow existing Elixir patterns from the codebase
  • Use GenServer for stateful components where appropriate
  • Include comprehensive documentation and examples
  • Add detailed logging for debugging
  • Structure with clear module boundaries

Testing Requirements

  • Test all conversion scenarios (YAML↔JSON)
  • Validate type preservation in all cases
  • Test DSPy signature conversion
  • Include performance benchmarks
  • Add edge case handling tests

Performance Considerations

  • Implement caching for frequently converted data
  • Support streaming for large files
  • Optimize memory usage for large datasets
  • Add configurable conversion options

Implement this bridge system as a complete, production-ready solution that integrates seamlessly with the existing pipeline_ex architecture while providing the foundation for DSPy integration.